精英家教网 > 高中数学 > 题目详情
3.已知复数$z=\frac{5}{2-i}$(i是复数单位),则复数z为(  )
A.2+iB.-2+iC.-2-iD.2-i

分析 直接由复数代数形式的乘除运算化简得答案.

解答 解:$z=\frac{5}{2-i}$=$\frac{5(2+i)}{(2-i)(2+i)}=2+i$,
故选:A.

点评 本题考查了复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.曲线C的极坐标方程是ρ=2sinθ,则曲线C上的点到直线l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=-3t+2}\end{array}\right.$(t为参数)的最短距离是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设平行四边形ABCD中,AB=4,BC=6,∠ABC=60°,则平行四边形ABCD的面积为12$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知角θ的终边上一点P($\sqrt{2}$,m),且sinθ=$\frac{{\sqrt{3}}}{3}$m,求cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$(n∈N*),计算f(2)=$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,推测当n≥2时,有f(2n)≥$\frac{n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知角α终边经过点$P({\sqrt{3},m})({m≠0})$,且$cosα=\frac{m}{6}$,则sinα=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=6cos2$\frac{ωx}{2}$+$\sqrt{3}$sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=$\frac{8\sqrt{3}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面直角坐标系xoy,以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.(φ为参数)$.点A,B是曲线C上两点,点A,B的极坐标分别为$({ρ_1},\frac{π}{3}),({ρ_2},\frac{5π}{6})$.则|AB|=(  )
A.4B.$\sqrt{7}$C.$4\sqrt{7}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆C的极坐标方程为ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$)的直角坐标方程为x2+y2-4x-4y=0  

查看答案和解析>>

同步练习册答案