精英家教网 > 高中数学 > 题目详情
18.f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$(n∈N*),计算f(2)=$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,推测当n≥2时,有f(2n)≥$\frac{n+2}{2}$.

分析 我们分析等式左边数的变化规律及等式两边数的关系,归纳推断后,即可得到答案

解答 解:观察已知中等式:
得 f(2)=$\frac{3}{2}$,即f(21)=$\frac{2+1}{2}$
f(4)>2,即f(22)>$\frac{2+2}{2}$
f(8)>$\frac{5}{2}$,即f(23)>$\frac{3+2}{2}$
f(16)>3,即f(24)>$\frac{4+2}{2}$
f(32)>$\frac{7}{2}$,即f(25)>$\frac{5+2}{2}$

则f(2n)≥$\frac{n+2}{2}$(n∈N*
故答案为:f(2n)≥$\frac{n+2}{2}$

点评 本题考查归纳推理,把已知的式子变形找规律是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC中,∠ABC=120°,BA=2,BC=3,D,E是线段AC的三等分点,则$\overrightarrow{BD}$•$\overrightarrow{BE}$的值为(  )
A.$\frac{65}{9}$B.$\frac{11}{9}$C.$\frac{41}{9}$D.-$\frac{13}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P1(2,-1),P2(0,5),点P在线段P1P2的延长线上,且|$\overrightarrow{{P}_{1}P}$|=2|$\overrightarrow{P{P}_{2}}$|,则点P的坐标(  )
A.(4,-7)B.(-2,11)C.(4,-7)和(-2,11)D.(-2,11)和(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点M为棱长是$2\sqrt{2}$的正方体ABCD-A1B1C1D1的内切球O球面上的动点,点N为B1C1的中点,若满足DM⊥BN,则动点M的轨迹的长度为$\frac{{4\sqrt{10}π}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=x2cos x在x=1处的导数是(  )
A.0B.2cos1-sin 1C.cos1-sin 1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数$z=\frac{5}{2-i}$(i是复数单位),则复数z为(  )
A.2+iB.-2+iC.-2-iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等比数列{an}各项均为正数,且a5a6+a4a7=54,则log3a1+log3a2+…+log3a10=(  )
A.8B.10C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设F1,F2为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点,过F2在的直线交椭圆于A,B两点,AF1⊥AB且AF1=AB,则椭圆C的离心率为$\sqrt{6}$-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果a<b<0,那么下列不等式成立的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.a+c<b+cC.a-c>b-cD.a•c<b•c

查看答案和解析>>

同步练习册答案