精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=(2-x)ex-ax-a,若不等式f(x)>0恰有两个正整数解,则a的取值范围是(  )
A.[-$\frac{1}{4}$e3,0)B.[-$\frac{1}{2}$e,0)C.[-$\frac{1}{4}$e3,$\frac{e}{2}$)D.[-$\frac{1}{4}$e3,2)

分析 利用构造的新函数g(x)和h(x),求导数g′(x),从而可得a的范围.

解答 解:令g(x)=(2-x)ex,h(x)=ax+a,
由题意知,存在2个正整数,使g(x)在直线h(x)的上方,
∵g′(x)=(1-x)ex
∴当x>1时,g′(x)<0,当x<1时,g′(x)>0,
∴g(x)max=g(1)=e,
且g(0)=2,g(2)=0,g(3)=-e3
直线h(x)恒过点(-1,0),且斜率为a,
由题意可知,$\left\{\begin{array}{l}{h(1)<e}\\{h(2)<0}\\{h(3)≥-{e}^{3}}\end{array}\right.$,
故实数a的取值范围是[-$\frac{1}{4}$e3,0),
故选A.

点评 本题考查导数的综合应用,及数形结合思想的应用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.点M为棱长是$2\sqrt{2}$的正方体ABCD-A1B1C1D1的内切球O球面上的动点,点N为B1C1的中点,若满足DM⊥BN,则动点M的轨迹的长度为$\frac{{4\sqrt{10}π}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设F1,F2为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点,过F2在的直线交椭圆于A,B两点,AF1⊥AB且AF1=AB,则椭圆C的离心率为$\sqrt{6}$-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有一段“三段论”,其推理是这样的:
对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点…大前提因为函数f(x)=x3满足f′(0)=0,…小前提所以x=0是函数f(x)=x3的极值点”,结论以上推理(  )
A.大前提错误B.小前提错误C.推理形式错误D.没有错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知$\overrightarrow a$,$\overrightarrow b$满足:$|\overrightarrow a|=3$,$|\overrightarrow b|=2$,$\overrightarrow a•\overrightarrow b=\frac{3}{2}$,则$|\overrightarrow a-\overrightarrow b|$=(  )
A.$\sqrt{10}$B.$\sqrt{5}$C.3D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.学校举行班级篮球赛,某名运动员每场比赛得分记录的茎叶图如下:
(1)求该运动员得分的中位数和平均数;
(2)估计该运动员每场得分超过10分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果a<b<0,那么下列不等式成立的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.a+c<b+cC.a-c>b-cD.a•c<b•c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.用数学归纳法证明“1+2+22+…+2n+2=2n+3-1”,验证n=1时,左边计算所得的式子为(  )
A.1B.1+2C.1+2+22D.1+2+22+23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则不等式(x+2017)3f(x+2017)+27f(-3)>0的解集是(  )
A.(-2020,-2017)B.(-∞,-2017)C.(-2018,-2017)D.(-∞,-2020)

查看答案和解析>>

同步练习册答案