精英家教网 > 高中数学 > 题目详情
5.用数学归纳法证明“1+2+22+…+2n+2=2n+3-1”,验证n=1时,左边计算所得的式子为(  )
A.1B.1+2C.1+2+22D.1+2+22+23

分析 通过表达式的特点,直接写出结果即可.

解答 解:左边的指数从0开始,依次加1,直到n+2,所以当n=1时,应加到23
故选:D.

点评 本题考查数学归纳法的应用,判断表达式的特征的解题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.函数f(x)=6cos2$\frac{ωx}{2}$+$\sqrt{3}$sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=$\frac{8\sqrt{3}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=(2-x)ex-ax-a,若不等式f(x)>0恰有两个正整数解,则a的取值范围是(  )
A.[-$\frac{1}{4}$e3,0)B.[-$\frac{1}{2}$e,0)C.[-$\frac{1}{4}$e3,$\frac{e}{2}$)D.[-$\frac{1}{4}$e3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆C的极坐标方程为ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$)的直角坐标方程为x2+y2-4x-4y=0  

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$y=\sqrt{3}sin2x+2{cos^2}x-1$的值域是(  )
A.[-1,2]B.[-2,2]C.[-1,3]D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若a1,a2,a3,…a20这20个数据的平均数为$\bar x$,方差为0.21,则a1,a2,a3,…a20,$\bar x$这21个数据的方差为(  )
A.0.19B.0.20C.0.21D.0.22

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=cos(\frac{π}{2}+x)+{sin^2}(\frac{π}{2}+x)$,x∈[-π,0],则f(x)的最大值为(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知${({x+1})^2}{({x+2})^{2016}}={a_0}+{a_1}({x+2})+{a_2}{({x+2})^2}+…+{a_{2018}}{({x+2})^{2018}}$,则$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2018}}}}{{{2^{2018}}}}$的值是($\frac{1}{2}$)2018

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC,|AB|=8,AC与BC边所在直线的斜率之积为定值m,
(1)求动点C的轨迹方程;
(2)当m=1时,过点E(0,1)的直线l与曲线C相交于P、Q两点,求P、Q两点的中点M的轨迹方程.

查看答案和解析>>

同步练习册答案