精英家教网 > 高中数学 > 题目详情
14.已知${({x+1})^2}{({x+2})^{2016}}={a_0}+{a_1}({x+2})+{a_2}{({x+2})^2}+…+{a_{2018}}{({x+2})^{2018}}$,则$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2018}}}}{{{2^{2018}}}}$的值是($\frac{1}{2}$)2018

分析 利用二项式定理,对等式中的x赋值-2,可求得a0=0,再令x=$\frac{3}{2}$,即可求出答案.

解答 解:∵(x+1)2(x+2)2016=a0+a1(x+2)+a2(x+2)+…+a2018(x+2)2018
∴令x=-2,得a0=0
再令x=-$\frac{3}{2}$,得到a0+$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2018}}}}{{{2^{2018}}}}$=(-$\frac{3}{2}$+1)2(-$\frac{3}{2}$+2)2016=($\frac{1}{2}$)2018
∴$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2018}}}}{{{2^{2018}}}}$=${({\frac{1}{2}})^{2018}}$,
故答案为:($\frac{1}{2}$)2018

点评 本题考查了二项式定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.有一段“三段论”,其推理是这样的:
对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点…大前提因为函数f(x)=x3满足f′(0)=0,…小前提所以x=0是函数f(x)=x3的极值点”,结论以上推理(  )
A.大前提错误B.小前提错误C.推理形式错误D.没有错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.用数学归纳法证明“1+2+22+…+2n+2=2n+3-1”,验证n=1时,左边计算所得的式子为(  )
A.1B.1+2C.1+2+22D.1+2+22+23

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.方程$|sin\frac{π}{2}x|=lg|x|$有多少个根?(  )
A.9B.10C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知全集U={-1,2,3,a},集合M={-1,3}.若∁UM={2,5},则实数a的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+alnx.
(1)当a=-2时,求函数f(x)的单调递减区间;
(2)若函数$g(x)=f(x)+\frac{2}{x}$在[1,+∞)上单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有3f(x)+xf′(x)>0,则不等式(x+2017)3f(x+2017)+27f(-3)>0的解集是(  )
A.(-2020,-2017)B.(-∞,-2017)C.(-2018,-2017)D.(-∞,-2020)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.斜率为$\sqrt{3}$的直线的倾斜角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知α为第三象限的角,且$sinα=-\frac{{\sqrt{5}}}{5}$,则tanα=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案