精英家教网 > 高中数学 > 题目详情
4.已知α为第三象限的角,且$sinα=-\frac{{\sqrt{5}}}{5}$,则tanα=$\frac{1}{2}$.

分析 根据同角三角函数基本关系式,求解即可.

解答 解:∵α为第三象限的角,
∴cosα=$-\sqrt{1-si{n}^{2}α}$=$-\frac{2\sqrt{5}}{5}$,
则tanα=$\frac{sinα}{cosα}=\frac{1}{2}$.
故答案为$\frac{1}{2}$

点评 本题考查了“弦化切”及同角三角函数基本关系式,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知${({x+1})^2}{({x+2})^{2016}}={a_0}+{a_1}({x+2})+{a_2}{({x+2})^2}+…+{a_{2018}}{({x+2})^{2018}}$,则$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2018}}}}{{{2^{2018}}}}$的值是($\frac{1}{2}$)2018

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC,|AB|=8,AC与BC边所在直线的斜率之积为定值m,
(1)求动点C的轨迹方程;
(2)当m=1时,过点E(0,1)的直线l与曲线C相交于P、Q两点,求P、Q两点的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人的能荣获一等奖的概率分别为$\frac{2}{3}$和$\frac{3}{4}$,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{5}{7}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图所示(单位:m),则该几何体的体积为(  )
A.$4\sqrt{3}+1$B.$4\sqrt{3}$C.$24+2\sqrt{3}+\sqrt{15}$D.$24+3\sqrt{3}+\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合P={x|1<x<3},Q={x|x>2},则P∩Q=(  )
A.(1,3)B.(2,3)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若$0<α<\frac{π}{2},\;0<β<\frac{π}{2}$,且$tanα=\frac{1}{7},\;\;tanβ=\frac{3}{4}$,则α+β的值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.圆(x-3)2+(y-3)2=4上到直线3x+4y-16=0的距离等于1的点有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若数列{an}满足2(a1+a2+a3+…+an)=(a1+an)n,则数列{an}是等差数列.类比上述结论,可以猜想:若数列{bn}满足(b1b2b3…bn2=(b1bnn,则数列{bn}是等比数列.

查看答案和解析>>

同步练习册答案