精英家教网 > 高中数学 > 题目详情
9.已知集合P={x|1<x<3},Q={x|x>2},则P∩Q=(  )
A.(1,3)B.(2,3)C.(1,2)D.(2,+∞)

分析 根据交集的定义写出P∩Q即可.

解答 解:集合P={x|1<x<3},Q={x|x>2},
则P∩Q={x|2<x<3}=(2,3).
故选:B.

点评 本题考查了交集的定义与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+alnx.
(1)当a=-2时,求函数f(x)的单调递减区间;
(2)若函数$g(x)=f(x)+\frac{2}{x}$在[1,+∞)上单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:
(Ⅰ)PA∥平面BDE;
(Ⅱ)平面PAC⊥平面BDE;
(III)若PB与底面所成的角为60°,AB=2a,求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果随机变量ξ~B(n,p),且E(ξ)=10,D(ξ)=8,则p等于(  )
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知α为第三象限的角,且$sinα=-\frac{{\sqrt{5}}}{5}$,则tanα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义在(-1,1)上的函数f(x)满足:$f(x)-f(y)=f({\frac{x-y}{1-xy}})$,当x∈(-1,0)时,有f(x)>0,且$f({-\frac{1}{2}})=1$.设$m=f({\frac{1}{5}})+f({\frac{1}{11}})+…+f({\frac{1}{{{n^2}+n-1}}}),\;\;n≥2,n∈{N^*}$,则实数m与-1的大小关系为(  )
A.m<-1B.m=-1C.m>-1D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知正项数列{an}的前n项和为Sn,对任意n∈N*,点(an,Sn)都在函数$f(x)=\frac{1}{2}{x}^{2}+\frac{1}{2}x$的图象上.
(1)求数列{an}的首项a1和通项公式an
(2)若数列{bn}满足${log_2}{b_n}=n+{log_2}({2{a_n}-1})({n∈{N^*}})$,求数列{bn}的前n项和Tn
(3)已知数列{cn}满足${c_n}=\frac{4n-6}{{{T_n}-6}}-\frac{1}{{{a_n}{a_{n+1}}}}({n∈{N^*}})$.若对任意n∈N*,存在${x_0}∈[{-\frac{1}{2},\frac{1}{2}}]$,使得c1+c2+…+cn≤f(x)-a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正方形ABCD的边长为1,弧BD是以点A为圆心的圆弧.
(1)在正方形内任取一点M,求事件“|AM|≤1”的概率;
(2)用大豆将正方形均匀铺满,经清点,发现大豆一共28粒,其中有22粒落在圆中阴影部分内,请据此估计圆周率π的近似值(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记$\frac{{{D_1}P}}{{{D_1}B}}$=λ.当∠APC为锐角时,λ的取值范围是$[{0,\frac{1}{3}})$.

查看答案和解析>>

同步练习册答案