精英家教网 > 高中数学 > 题目详情
19.设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记$\frac{{{D_1}P}}{{{D_1}B}}$=λ.当∠APC为锐角时,λ的取值范围是$[{0,\frac{1}{3}})$.

分析 ∠APC为锐角等价于cos∠APC>0,等价于$\overrightarrow{PA}$•$\overrightarrow{PC}$>0,根据向量数量积的坐标运算即可.

解答 解:由题设可知,建立如图所示的空间直角坐标系D-xyz,
则有A(1,0,0),B(1,1,0),C(0,1,0),D(0,0,1)
由$\overrightarrow{{D}_{1}B}$=(1,1,-1),得$\overrightarrow{{D}_{1}P}$=(λ,λ,-λ),
所以$\overrightarrow{PA}$=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1),
$\overrightarrow{PC}$=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1),
所以∠APC为锐角等价于cos∠APC>0,
则等价于$\overrightarrow{PA}$•$\overrightarrow{PC}$>0,
即(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)2=(λ-1)(3λ-1)>0,
∵0≤λ<1,∴,0≤λ<$\frac{1}{3}$
因此,λ的取值范围是$[{0,\frac{1}{3}})$,
故答案为$[{0,\frac{1}{3}})$.

点评 本题考查了用空间向量求直线间的夹角,一元二次不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知集合P={x|1<x<3},Q={x|x>2},则P∩Q=(  )
A.(1,3)B.(2,3)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC的内角A,B,C的对边分别为a,b,c,若cosA=$\frac{1}{3}$,c=3b,且△ABC面积S△ABC=$\sqrt{2}$.
(1)求边b.c;
(2)求边a并判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知单位向量$\overrightarrow a$和$\overrightarrow b$满足$|{\overrightarrow a-\overrightarrow b}|=\sqrt{3}|{\overrightarrow a+\overrightarrow b}|$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若数列{an}满足2(a1+a2+a3+…+an)=(a1+an)n,则数列{an}是等差数列.类比上述结论,可以猜想:若数列{bn}满足(b1b2b3…bn2=(b1bnn,则数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,网格纸上小正方形的边长为1,图中粗线画出的是某零件的三视图,该零件由一个棱长为4的正方体毛坯切削得到,则切削掉部分的体积与原毛坯体积的比值为(  )
A.$\frac{3}{8}$B.$\frac{5}{8}$C.$\frac{5}{12}$D.$\frac{7}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数x,y满足x2+y2+8x-6y+16=0,则x+y的最小值是(  )
A.-3$\sqrt{2}$-2B.1C.3$\sqrt{2}$-1D.-3$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=acosx+b的最大值为1,最小值为-3,试确定$f(x)=bsin(ax+\frac{π}{3})$的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=3sin($\frac{1}{2}$x-$\frac{π}{4}$)

(1)求此函数的振幅、周期和初相;
(2)用五点法在给定的坐标系中作出函数一个周期的图象.(先列表再作图)
$\frac{1}{2}$x-$\frac{π}{4}$
x
3sin($\frac{1}{2}$x-$\frac{π}{4}$)

查看答案和解析>>

同步练习册答案