精英家教网 > 高中数学 > 题目详情
4.若实数x,y满足x2+y2+8x-6y+16=0,则x+y的最小值是(  )
A.-3$\sqrt{2}$-2B.1C.3$\sqrt{2}$-1D.-3$\sqrt{2}$-1

分析 由题意可得方程表示一个圆,当直线y=-x+z和圆相切时,z取得最值,利用点到直线的距离公式求得z的最值,可得结论.

解答 解:x2+y2+8x-6y+16=0,即(x+4)2+(y-3)2 =9,表示以C(-4,3)为圆心、半径等于3的圆,
则z=x+y,即y=-x+z,故当直线y=-x+z和圆相切时,z取得最值.
由$\frac{|-4+3-z|}{\sqrt{2}}$=3,求得z=3$\sqrt{2}$-1,或z=-3$\sqrt{2}$-1,
故z的最小值为-3$\sqrt{2}$-1,
故选:D.

点评 本题主要考查圆的一般方程,直线和圆相切的性质,点到直线的距离公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知正项数列{an}的前n项和为Sn,对任意n∈N*,点(an,Sn)都在函数$f(x)=\frac{1}{2}{x}^{2}+\frac{1}{2}x$的图象上.
(1)求数列{an}的首项a1和通项公式an
(2)若数列{bn}满足${log_2}{b_n}=n+{log_2}({2{a_n}-1})({n∈{N^*}})$,求数列{bn}的前n项和Tn
(3)已知数列{cn}满足${c_n}=\frac{4n-6}{{{T_n}-6}}-\frac{1}{{{a_n}{a_{n+1}}}}({n∈{N^*}})$.若对任意n∈N*,存在${x_0}∈[{-\frac{1}{2},\frac{1}{2}}]$,使得c1+c2+…+cn≤f(x)-a成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,过点(0,-b),(a,0)的直线与原点的距离为$\sqrt{2}$,M(x0,y0)是椭圆上任一点,从原点O向圆M:(x-x02+(y-y02=2作两条切线,分别交椭圆于点P,Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若记直线OP,OQ的斜率分别为k1,k2,试求k1k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记$\frac{{{D_1}P}}{{{D_1}B}}$=λ.当∠APC为锐角时,λ的取值范围是$[{0,\frac{1}{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将A,B,C,D,E五个字母排成一排,若A与B相邻,且A与C不相邻,则不同的排法共有36种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在正方体ABCD-A1B1C1D1中,E是AB的中点,F在CC1上,且CF=2FC1,点P是侧面AA1D1D(包括边界)上一动点,且PB1∥平面DEF,则tan∠ABP的取值范围是(  )
A.[$\frac{1}{2}$,$\frac{3}{2}$]B.[0,1]C.[$\frac{1}{3}$,$\frac{\sqrt{10}}{3}$]D.[$\frac{1}{3}$,$\frac{\sqrt{13}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.正三棱柱ABC-A1B1C1,BC=BB1=1,D为BC上一点,且满足AD⊥C1D.
(1)求证:截面ADC1⊥侧面BC1
(2)求点B到截面ADC1距离;
(3)求二面角C-AC1-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx.
(1)若f(x)在点(1,0)处的切线方程;
(2)若$g(x)=\frac{f(x)+a}{x}$(a>0),在[1,e]上的最小值为$\frac{3}{2}$,求实数a的值;
(3)证明:当x>1时,2f(x)<x2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sin($\frac{π}{6}$-α)=$\frac{1}{3}$,则$cos[{2(\frac{π}{3}+α)}]$的值是(  )
A.$-\frac{7}{9}$B.$\frac{7}{9}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案