精英家教网 > 高中数学 > 题目详情
7.已知单位向量$\overrightarrow a$和$\overrightarrow b$满足$|{\overrightarrow a-\overrightarrow b}|=\sqrt{3}|{\overrightarrow a+\overrightarrow b}|$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 根据$|\overrightarrow{a}|=1,|\overrightarrow{b}|=1$,对$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{3}|\overrightarrow{a}+\overrightarrow{b}|$两边平方即可求出$\overrightarrow{a}•\overrightarrow{b}$的值,进而求出$cos<\overrightarrow{a},\overrightarrow{b}>$的值,从而得出$\overrightarrow{a},\overrightarrow{b}$的夹角.

解答 解:由$|\overrightarrow{a}-\overrightarrow{b}|=\sqrt{3}|\overrightarrow{a}+\overrightarrow{b}|$得:
$(\overrightarrow{a}-\overrightarrow{b})^{2}=3(\overrightarrow{a}+\overrightarrow{b})^{2}$;
∴${\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}=3({\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2})$,且$|\overrightarrow{a}|=|\overrightarrow{b}|=1$;
∴$1-2\overrightarrow{a}•\overrightarrow{b}+1=3(1+2\overrightarrow{a}•\overrightarrow{b}+1)$;
解得$\overrightarrow{a}•\overrightarrow{b}=-\frac{1}{2}$;
∴$cos<\overrightarrow{a},\overrightarrow{b}>=-\frac{1}{2}$;
∴$\overrightarrow{a},\overrightarrow{b}$夹角为$\frac{2π}{3}$.
故选:C.

点评 考查向量数量积的运算及计算公式,以及向量夹角的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.如果随机变量ξ~B(n,p),且E(ξ)=10,D(ξ)=8,则p等于(  )
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正方形ABCD的边长为1,弧BD是以点A为圆心的圆弧.
(1)在正方形内任取一点M,求事件“|AM|≤1”的概率;
(2)用大豆将正方形均匀铺满,经清点,发现大豆一共28粒,其中有22粒落在圆中阴影部分内,请据此估计圆周率π的近似值(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某几何体的三视图(单位:cm)如图所示,则此几何体的所有棱长之和为27+$\sqrt{34}$+$\sqrt{41}$cm,体积为20cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{2}}{2}$,过点(0,-b),(a,0)的直线与原点的距离为$\sqrt{2}$,M(x0,y0)是椭圆上任一点,从原点O向圆M:(x-x02+(y-y02=2作两条切线,分别交椭圆于点P,Q.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若记直线OP,OQ的斜率分别为k1,k2,试求k1k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知平面向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow{b}$=(x2,y2),那么$\overrightarrow{a}$•$\overrightarrow{b}$=x1x2+y1y2;空间向量$\overrightarrow{a}$=(x1,y1,z1),$\overrightarrow{b}$=(x2,y2.z2),那么$\overrightarrow{a}$•$\overrightarrow{b}$=x1x2+y1y2+z1z2.由此推广到n维向量:$\overrightarrow{a}$=(a1,a2,…,an),$\overrightarrow{b}$=(b1,b2,…,bn),那么$\overrightarrow{a}$•$\overrightarrow{b}$=a1b1+a2b2+a3b3+…+anbn..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上,记$\frac{{{D_1}P}}{{{D_1}B}}$=λ.当∠APC为锐角时,λ的取值范围是$[{0,\frac{1}{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在正方体ABCD-A1B1C1D1中,E是AB的中点,F在CC1上,且CF=2FC1,点P是侧面AA1D1D(包括边界)上一动点,且PB1∥平面DEF,则tan∠ABP的取值范围是(  )
A.[$\frac{1}{2}$,$\frac{3}{2}$]B.[0,1]C.[$\frac{1}{3}$,$\frac{\sqrt{10}}{3}$]D.[$\frac{1}{3}$,$\frac{\sqrt{13}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数$f(x)=sin({ωx+\frac{π}{4}})({ω>0})在({\frac{π}{2},π})$单调递减,则ω的取值范围可以是(  )
A.$[{\frac{1}{2},\frac{5}{4}}]$B.$[{0,\frac{5}{4}}]$C.$({0,\frac{1}{2}}]$D.(0,2]

查看答案和解析>>

同步练习册答案