精英家教网 > 高中数学 > 题目详情
10.已知函数$f(x)=sin({ωx+\frac{π}{4}})({ω>0})在({\frac{π}{2},π})$单调递减,则ω的取值范围可以是(  )
A.$[{\frac{1}{2},\frac{5}{4}}]$B.$[{0,\frac{5}{4}}]$C.$({0,\frac{1}{2}}]$D.(0,2]

分析 利用正弦函数的单调性,可得ω•$\frac{π}{2}$+$\frac{π}{4}$≥$\frac{π}{2}$+2kπ,ω•π+$\frac{π}{4}$≤$\frac{3π}{2}$+2kπ,k∈Z,此求得ω的范围.

解答 解:∵已知函数$f(x)=sin({ωx+\frac{π}{4}})({ω>0})在({\frac{π}{2},π})$单调递减,
∴ω•$\frac{π}{2}$+$\frac{π}{4}$≥$\frac{π}{2}$+2kπ,ω•π+$\frac{π}{4}$≤$\frac{3π}{2}$+2kπ,
求得$\frac{1}{2}$+4k≤ω≤$\frac{5}{4}$+2k,令k=0,可得$\frac{1}{2}$≤ω≤$\frac{5}{4}$,
故选:A.

点评 本题主要考查正弦函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知单位向量$\overrightarrow a$和$\overrightarrow b$满足$|{\overrightarrow a-\overrightarrow b}|=\sqrt{3}|{\overrightarrow a+\overrightarrow b}|$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数y=acosx+b的最大值为1,最小值为-3,试确定$f(x)=bsin(ax+\frac{π}{3})$的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.2弧度圆心角所对的弦长为2sin1,则这个圆心角所夹扇形的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a,b,c分别是锐角△ABC的三个内角A,B,C的对边,且$\frac{2b-c}{a}$=$\frac{cosC}{cosA}$.
(1)求A的大小;
(2)当$a=\sqrt{3}$时,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知Sn为正项数列{an}的前n项和,且满足$2{S_n}={a_n}^2+{a_n}(n∈{N^*})$.
(1)求出a1,a2,a3,a4
(2)猜想{an}的通项公式并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=3sin($\frac{1}{2}$x-$\frac{π}{4}$)

(1)求此函数的振幅、周期和初相;
(2)用五点法在给定的坐标系中作出函数一个周期的图象.(先列表再作图)
$\frac{1}{2}$x-$\frac{π}{4}$
x
3sin($\frac{1}{2}$x-$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某校高二(1)班每周都会选出两位“迟到之星”,期中考试之前一周“迟到之星”人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生”,小赵说:“一定没有我,肯定有小宋”,小宋说:“小马、小谭二人中有且仅有一人是迟到之星”,小谭说:“小赵说的对”.已知这四人中有且只有两人的说法是正确的,则“迟到之星”是(  )
A.小赵、小谭B.小马、小宋C.小马、小谭D.小赵、小宋

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某同学在一次研究性学习中发现,以下四个式子的值都等于同一个常数:
(1)cos(-60°)+cos60°+cos180°;     
(2)cos(-27°)+cos107°+cos227°;
(3)cos30°+cos150°+cos270°;     
 (4)cos40°+cos160°+cos280°.
(Ⅰ)试从上述四个式子中选择一个式子,进行化简求值;
(Ⅱ)根据(Ⅰ)的计算结果,请你写出一个以题设的四个式子为特例的一般性命题,并给出证明.

查看答案和解析>>

同步练习册答案