精英家教网 > 高中数学 > 题目详情
19.一个几何体的三视图如图所示(单位:m),则该几何体的体积为(  )
A.$4\sqrt{3}+1$B.$4\sqrt{3}$C.$24+2\sqrt{3}+\sqrt{15}$D.$24+3\sqrt{3}+\sqrt{15}$

分析 由题意,直观图是三棱柱与三棱锥的组合体,利用所给数据,求出体积.

解答 解:由题意,直观图是三棱柱与三棱锥的组合体,
体积为$\frac{1}{2}×2×\sqrt{3}×4+\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×\sqrt{3}$=4$\sqrt{3}$+1.
故选A.

点评 本题考查了棱锥的三视图和结构特征,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知全集U={-1,2,3,a},集合M={-1,3}.若∁UM={2,5},则实数a的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“2<m<6”是“方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1为双曲线的方程”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0,$\frac{π}{2}$))的图象在y轴上的截距为1,在相邻两个最值点$({x_0}-\frac{3}{2},2)$和(x0,-2)上(x0>0),函数f(x)分别取最大值和最小值.
(1)求函数f(x)的解析式;
(2)若f(x)=$\frac{k+1}{2}$在区间$[0,\frac{3}{2}]$内有两个不同的零点,求k的取值范围;
(3)求函数f(x)在区间$[\frac{13}{4},\frac{23}{4}]$上的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知回归方程$\stackrel{∧}{y}$=2x+1,而试验得到一组数据是(2,5.1),(3,6.9),(4,9.1),则残差平方和是(  )
A.0.01B.0.02C.0.03D.0.04

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知α为第三象限的角,且$sinα=-\frac{{\sqrt{5}}}{5}$,则tanα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在数列{an}中,${a_1}=\frac{1}{2},{a_n}_{+1}=1-\frac{1}{a_n}$,则a5=(  )
A.2B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设(1+3i)(2a+i)的实部与虚部相等,其中a为实数,则a=(  )
A.-1B.-2C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.双曲线$\frac{y^2}{2}-{x^2}=1$的焦距是$2\sqrt{3}$;渐近线方程为$\sqrt{2}x±y=0$.

查看答案和解析>>

同步练习册答案