精英家教网 > 高中数学 > 题目详情
10.“2<m<6”是“方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1为双曲线的方程”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1为双曲线的方程,则(m-2)(6-m)<0,m<2或m>6,即可得出结论.

解答 解:方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1为双曲线的方程,则(m-2)(6-m)<0,
∴m<2或m>6,
∴“2<m<6”是“方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1为双曲线的方程”的既不充分也不必要条件,
故选D.

点评 本题考查充要条件的判断,考查学生的计算能力,利用方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1为双曲线的方程,则(m-2)(6-m)<0,求出m的范围是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数$y=\sqrt{3}sin2x+2{cos^2}x-1$的值域是(  )
A.[-1,2]B.[-2,2]C.[-1,3]D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$0<{θ_1}<{θ_2}<\frac{π}{2}$,则必有(  )
A.${e^{cos{θ_1}}}-{e^{cos{θ_2}}}>lncos{θ_1}-lncos{θ_2}$
B.${e^{cos{θ_1}}}-{e^{cos{θ_2}}}<lncos{θ_1}-lncos{θ_2}$
C.$cos{θ_2}{e^{cos{θ_1}}}>cos{θ_1}{e^{cos{θ_2}}}$
D.$cos{θ_2}{e^{cos{θ_1}}}<cos{θ_1}{e^{cos{θ_2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a=0.5${\;}^{\frac{1}{3}}$,b=($\frac{3}{5}$)${\;}^{-\frac{1}{3}}$,c=log2.51.5,则a,b,c的大小关系(  )
A.c<a<bB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,如果有性质acosA=bcosB,这个三角形的形状是(  )
A.等边三角形B.等腰三角形
C.等腰三角形或直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC,|AB|=8,AC与BC边所在直线的斜率之积为定值m,
(1)求动点C的轨迹方程;
(2)当m=1时,过点E(0,1)的直线l与曲线C相交于P、Q两点,求P、Q两点的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.化简:$\overrightarrow{AB}+\overrightarrow{BC}-\overrightarrow{AD}$=$\overrightarrow{DC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图所示(单位:m),则该几何体的体积为(  )
A.$4\sqrt{3}+1$B.$4\sqrt{3}$C.$24+2\sqrt{3}+\sqrt{15}$D.$24+3\sqrt{3}+\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.
分组频数
[2,4)2
[4,6)10
[6,8)16
[8,10)8
[10,12]4
合计40
(1)求频率分布直方图中a,b的值;
(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;
(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.

查看答案和解析>>

同步练习册答案