精英家教网 > 高中数学 > 题目详情
2.化简:$\overrightarrow{AB}+\overrightarrow{BC}-\overrightarrow{AD}$=$\overrightarrow{DC}$.

分析 根据向量的加减的几何意义计算即可.

解答 解:简:$\overrightarrow{AB}+\overrightarrow{BC}-\overrightarrow{AD}$=$\overrightarrow{AC}$-$\overrightarrow{AD}$=$\overrightarrow{DC}$,
故答案为:$\overrightarrow{DC}$

点评 本题考查了向量的加减的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)相连,线段PQ的中点M的轨迹方程是(  )
A.(x-3)2+y2=1B.(2x-3)2+4y2=1C.(x+3)2+y2=4D.(2x+3)2+4y2=4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,BC=1,B=$\frac{2π}{3}$,△ABC面积S=$\sqrt{3}$,则边AC长为$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.“2<m<6”是“方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}$=1为双曲线的方程”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈R,2x>0,那么命题¬p为(  )
A.?x∈R,2x<0B.?x∈R,2x<0C.?x∈R,2x≤0D.?x∈R,2x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0,$\frac{π}{2}$))的图象在y轴上的截距为1,在相邻两个最值点$({x_0}-\frac{3}{2},2)$和(x0,-2)上(x0>0),函数f(x)分别取最大值和最小值.
(1)求函数f(x)的解析式;
(2)若f(x)=$\frac{k+1}{2}$在区间$[0,\frac{3}{2}]$内有两个不同的零点,求k的取值范围;
(3)求函数f(x)在区间$[\frac{13}{4},\frac{23}{4}]$上的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知回归方程$\stackrel{∧}{y}$=2x+1,而试验得到一组数据是(2,5.1),(3,6.9),(4,9.1),则残差平方和是(  )
A.0.01B.0.02C.0.03D.0.04

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在数列{an}中,${a_1}=\frac{1}{2},{a_n}_{+1}=1-\frac{1}{a_n}$,则a5=(  )
A.2B.3C.-1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设{an}是等差数列,下列结论中正确的是(  )
A.若a1+a2>0,则a2+a3>0B.若a1+a2<0,则a2+a3<0
C.若0<a1<a2,则a2>$\sqrt{{a}_{1}{a}_{3}}$D.若a1<0,则(a2-a1)(a2-a3)<0

查看答案和解析>>

同步练习册答案