精英家教网 > 高中数学 > 题目详情
12.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)相连,线段PQ的中点M的轨迹方程是(  )
A.(x-3)2+y2=1B.(2x-3)2+4y2=1C.(x+3)2+y2=4D.(2x+3)2+4y2=4

分析 设动点P(x0,y0),PQ的中点为M(x,y),由中点坐标公式解出x0=2x-3,y0=2y,将点P(2x-3,2y)代入已知圆的方程,化简即可得到所求中点的轨迹方程.

解答 解:设动点P(x0,y0),PQ的中点为M(x,y),
可得x=$\frac{1}{2}$(3+x0),y=$\frac{1}{2}$y0,解出x0=2x-3,y0=2y,
∵点P(x0,y0)即P(2x-3,2y)在圆x2+y2=1上运动,
∴(2x-3)2+(2y)2=1,化简得(2x-3)2+4y2=1,即为所求动点轨迹方程.
故选:A.

点评 本题给出定点与定圆,求圆上动点与定点连线中点的轨迹方程.着重考查了圆的方程与动点轨迹方程求法等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.某小卖部销售某品牌的饮料的零售价与销量间的关系统计如下:
单价x(元)3.03.23.43.63.84.0
销量y(瓶)504443403528
已知x,y的关系符合回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=-20.若该品牌的饮料的进价为2元,为使利润最大,零售价应定为3.75元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知非零向量$\overrightarrow m$,$\overrightarrow n$满足3|$\overrightarrow m|=2|\overrightarrow n|$,<$\overrightarrow m,\overrightarrow n>={60°}$,若<$\overrightarrow m,\overrightarrow n>={60°}$,若$\overrightarrow n⊥(t\overrightarrow m+\overrightarrow n)$,则实数t的值为(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数$y=\sqrt{3}sin2x+2{cos^2}x-1$的值域是(  )
A.[-1,2]B.[-2,2]C.[-1,3]D.[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b∈(0,e),且a<b,则下列式子中正确的是(  )
A.alnb<blnaB.alnb>blnaC.alna>blnbD.alna<blnb

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=cos(\frac{π}{2}+x)+{sin^2}(\frac{π}{2}+x)$,x∈[-π,0],则f(x)的最大值为(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$f(x)=1o{g_{\frac{1}{2}}}(sinxcosx+{cos^2}x)$的单调递减区间为[kπ-$\frac{π}{4}$,kπ+$\frac{π}{8}$](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$0<{θ_1}<{θ_2}<\frac{π}{2}$,则必有(  )
A.${e^{cos{θ_1}}}-{e^{cos{θ_2}}}>lncos{θ_1}-lncos{θ_2}$
B.${e^{cos{θ_1}}}-{e^{cos{θ_2}}}<lncos{θ_1}-lncos{θ_2}$
C.$cos{θ_2}{e^{cos{θ_1}}}>cos{θ_1}{e^{cos{θ_2}}}$
D.$cos{θ_2}{e^{cos{θ_1}}}<cos{θ_1}{e^{cos{θ_2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.化简:$\overrightarrow{AB}+\overrightarrow{BC}-\overrightarrow{AD}$=$\overrightarrow{DC}$.

查看答案和解析>>

同步练习册答案