精英家教网 > 高中数学 > 题目详情
11.在数列{an}中,${a_1}=\frac{1}{2},{a_n}_{+1}=1-\frac{1}{a_n}$,则a5=(  )
A.2B.3C.-1D.$\frac{1}{2}$

分析 根据条件,利用递推式,代入计算,即可求得结论.

解答 解:${a_1}=\frac{1}{2},{a_n}_{+1}=1-\frac{1}{a_n}$,
则a2=1-2=-1,
a3=1+1=2,
a4=1-$\frac{1}{2}$=$\frac{1}{2}$,
a5=1-2=-1,
故选:C

点评 本题考查数列递推式,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若$0<{θ_1}<{θ_2}<\frac{π}{2}$,则必有(  )
A.${e^{cos{θ_1}}}-{e^{cos{θ_2}}}>lncos{θ_1}-lncos{θ_2}$
B.${e^{cos{θ_1}}}-{e^{cos{θ_2}}}<lncos{θ_1}-lncos{θ_2}$
C.$cos{θ_2}{e^{cos{θ_1}}}>cos{θ_1}{e^{cos{θ_2}}}$
D.$cos{θ_2}{e^{cos{θ_1}}}<cos{θ_1}{e^{cos{θ_2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.化简:$\overrightarrow{AB}+\overrightarrow{BC}-\overrightarrow{AD}$=$\overrightarrow{DC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图所示(单位:m),则该几何体的体积为(  )
A.$4\sqrt{3}+1$B.$4\sqrt{3}$C.$24+2\sqrt{3}+\sqrt{15}$D.$24+3\sqrt{3}+\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\frac{1}{3}{x^3}-b{x^2}+2x+1,\;\;({x∈R})$.
(1)若$b=\frac{3}{2}$,求函数y=f(x)的单调区间;
(2)若x=-1是函数y=f(x)的一个极值点,试判断此时函数y=f(x)的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若$0<α<\frac{π}{2},\;0<β<\frac{π}{2}$,且$tanα=\frac{1}{7},\;\;tanβ=\frac{3}{4}$,则α+β的值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为${S_n}={2^n}+a$(a为常数,n∈N*).
(1)求a1,a2,a3
(2)若数列{an}为等比数列,求常数a的值及an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.
分组频数
[2,4)2
[4,6)10
[6,8)16
[8,10)8
[10,12]4
合计40
(1)求频率分布直方图中a,b的值;
(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;
(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.观察下列三角形数表,数表(1)是杨辉三角数表,数表(2)是与数表(1)有相同构成规律(除每行首末两端的数外)的一个数表

对于数表(2),设第n行第二个数为an(n∈N*)(如a1=2,a2=4,a3=7)
(I )归纳出an与an-1(n≥2,n∈N*)的递推公式(不用证明),并由归纳的递推公式,求出{an}的通项公式an
(Ⅱ)数列{bn}满足:(an-1)•bn=1,求证:b1+b1+…+bn<2.

查看答案和解析>>

同步练习册答案