精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0,$\frac{π}{2}$))的图象在y轴上的截距为1,在相邻两个最值点$({x_0}-\frac{3}{2},2)$和(x0,-2)上(x0>0),函数f(x)分别取最大值和最小值.
(1)求函数f(x)的解析式;
(2)若f(x)=$\frac{k+1}{2}$在区间$[0,\frac{3}{2}]$内有两个不同的零点,求k的取值范围;
(3)求函数f(x)在区间$[\frac{13}{4},\frac{23}{4}]$上的对称轴方程.

分析 (1)由题意得f(0)=1,f(x)的最大值等于2,周期的一半等于$\frac{3}{2}$,列出方程组解出A,ω,φ,
(2)$x∈[0,\frac{3}{2}]⇒\frac{2π}{3}x+\frac{π}{6}∈[\frac{π}{6},\frac{7π}{6}]⇒1≤\frac{k+1}{2}<2$,即可求k的取值范围;
(3)$\frac{2π}{3}x+\frac{π}{6}=\frac{π}{2}+kπ,k∈Z⇒x=\frac{1}{2}+\frac{3}{2}k,k∈Z$,即可求函数f(x)在区间$[\frac{13}{4},\frac{23}{4}]$上的对称轴方程.

解答 解:(1)$A=2,\frac{T}{2}={x_0}-({x_0}-\frac{3}{2})=\frac{3}{2}⇒T=3⇒ω=\frac{2π}{3}$,
∴f(x)=2sin($\frac{2π}{3}$x+φ),
代入(0,1)点,2sinφ=1,
∵φ∈(0,$\frac{π}{2}$),∴φ=$\frac{π}{6}$,∴f(x)=2sin($\frac{2π}{3}$x+$\frac{π}{6}$);
(2)$x∈[0,\frac{3}{2}]⇒\frac{2π}{3}x+\frac{π}{6}∈[\frac{π}{6},\frac{7π}{6}]⇒1≤\frac{k+1}{2}<2$⇒1≤k<3
(3)$\frac{2π}{3}x+\frac{π}{6}=\frac{π}{2}+kπ,k∈Z⇒x=\frac{1}{2}+\frac{3}{2}k,k∈Z$
⇒函数f(x)在区间$[\frac{13}{4},\frac{23}{4}]$上的对称轴方程为$x=\frac{7}{2}$,x=5.

点评 本题考查三角函数解析式的确定,考查三角函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=cos(\frac{π}{2}+x)+{sin^2}(\frac{π}{2}+x)$,x∈[-π,0],则f(x)的最大值为(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a=0.5${\;}^{\frac{1}{3}}$,b=($\frac{3}{5}$)${\;}^{-\frac{1}{3}}$,c=log2.51.5,则a,b,c的大小关系(  )
A.c<a<bB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC,|AB|=8,AC与BC边所在直线的斜率之积为定值m,
(1)求动点C的轨迹方程;
(2)当m=1时,过点E(0,1)的直线l与曲线C相交于P、Q两点,求P、Q两点的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.化简:$\overrightarrow{AB}+\overrightarrow{BC}-\overrightarrow{AD}$=$\overrightarrow{DC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人的能荣获一等奖的概率分别为$\frac{2}{3}$和$\frac{3}{4}$,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{5}{7}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图所示(单位:m),则该几何体的体积为(  )
A.$4\sqrt{3}+1$B.$4\sqrt{3}$C.$24+2\sqrt{3}+\sqrt{15}$D.$24+3\sqrt{3}+\sqrt{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若$0<α<\frac{π}{2},\;0<β<\frac{π}{2}$,且$tanα=\frac{1}{7},\;\;tanβ=\frac{3}{4}$,则α+β的值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{b}$|=2,|$\overrightarrow{a}$|=2|$\overrightarrow{b}$-$\overrightarrow{a}$|,则|$\overrightarrow{a}$|的取值范围是[$\frac{4}{3},4$].

查看答案和解析>>

同步练习册答案