精英家教网 > 高中数学 > 题目详情
8.设k∈Z,函数y=sin ($\frac{π}{4}$+$\frac{x}{2}$)cos ($\frac{π}{4}$+$\frac{x}{2}$)的单调增区间为(  )
A.[(k+$\frac{1}{2}$)π,(k+1)π]B.[(2k+1)π,2(k+1)π]C.[kπ,(k+$\frac{1}{2}$)π]D.[2kπ,(2k+1)π]

分析 利用二倍角的正弦公式、诱导公式化简函数的解析式,再利用余弦函数的单调性,得出结论.

解答 解:∵函数y=sin ($\frac{π}{4}$+$\frac{x}{2}$)cos ($\frac{π}{4}$+$\frac{x}{2}$)=$\frac{1}{2}$sin(x+$\frac{π}{2}$)=$\frac{1}{2}$cosx,
它的增区间,即y=cosx的增区间,为[2kπ+π,2kπ+2π],k∈Z,
故选:B.

点评 本题主要考查二倍角的正弦公式、诱导公式的应用,余弦函数的增区间,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若x,y满足约束条件$\left\{\begin{array}{l}-1≤x+y≤1\\-1≤x-y≤1\end{array}\right.$,则z=x-2y的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=cos(2x-\frac{π}{3})+2{sin^2}x$.
(Ⅰ)求函数f(x)的周期、单调递增区间;
(Ⅱ)当x∈$[0,\frac{π}{2}]$时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将十进制数389化成四进制数的末位是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是一个算法的程序框图,当输入的x的值为7时,输出的 y值恰好是-1,则“?”处应填的关系式可能是(  )
A.y=2x+1B.y=3-xC.y=|x|D.y=log${\;}_{\frac{1}{3}}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\vec a=({2,3})$,$\vec b=({-2,4})$,向量$\vec a$与b夹角为θ,
(1)求cosθ;
(2)求$\vec b$在$\vec a$的方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,五面体ABCDE,四边形ABDE是矩形,△ABC是正三角形,AB=1,AE=2,F是线段BC上一点,直线BC与平面ABD所成角为30°,CE∥平面ADF.
(1)试确定F的位置.
(2)求三棱锥A-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图1,已知矩形ABCD中,AB=2,$BC=2\sqrt{3}$,点E是边BC上的点,且$CE=\frac{1}{3}CB$,DE与AC相交于点H.现将△ACD沿AC折起,如图2,点D的位置记为D',此时$D'E=\frac{{\sqrt{30}}}{3}$.
(Ⅰ)求证:D'H⊥平面ABC;
(Ⅱ)求三棱锥B-AED'的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知cosα=$-\frac{5}{13}$,角α是第二象限角,则tan(2π-α)等于(  )
A.$\frac{12}{13}$B.-$\frac{12}{13}$C.$\frac{12}{5}$D.-$\frac{12}{5}$

查看答案和解析>>

同步练习册答案