精英家教网 > 高中数学 > 题目详情
18.已知cosα=$-\frac{5}{13}$,角α是第二象限角,则tan(2π-α)等于(  )
A.$\frac{12}{13}$B.-$\frac{12}{13}$C.$\frac{12}{5}$D.-$\frac{12}{5}$

分析 由已知结合同角三角函数基本关系式求得sinα,再由诱导公式及同角三角函数的基本关系式求解.

解答 解:∵cosα=$-\frac{5}{13}$,角α是第二象限角,
∴sinα=$\sqrt{1-co{s}^{2}α}=\sqrt{1-(-\frac{5}{13})^{2}}=\frac{12}{13}$.
∴tan(2π-α)=-tanα=-$\frac{sinα}{cosα}=-\frac{\frac{12}{13}}{-\frac{5}{13}}=\frac{12}{5}$.
故选:C.

点评 本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设k∈Z,函数y=sin ($\frac{π}{4}$+$\frac{x}{2}$)cos ($\frac{π}{4}$+$\frac{x}{2}$)的单调增区间为(  )
A.[(k+$\frac{1}{2}$)π,(k+1)π]B.[(2k+1)π,2(k+1)π]C.[kπ,(k+$\frac{1}{2}$)π]D.[2kπ,(2k+1)π]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在直三棱柱ABC-A1B1C1中,A1B1⊥B1C1,E、F分别是A1B、A1C的中点.
求证:(1)EF∥平面ABC;
(2)平面A1FB1⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若10x=3,10y=4,则10x+y的值为(  )
A.700B.300C.400D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知递增的等差数列{an}中,a2、a5是方程x2-12x+27=0的两根,数列{an}为等比数列,b1=$\frac{2}{3},b_2+b_3=\frac{8}{27}$.
(1)求数列{an},{bn}的通项公式;
(2)记cn=an•bn,数列{cn}的前n项和为Tn.求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求函数f(x)=ln(1+$\sqrt{{x}^{2}}$-x)在点x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在多面体ABCDPE中,四边形ABCD和CDPE都是直角梯形,AB∥DC,∥DC,AD⊥DC,PD⊥平面ABCD,AB=PD=DA=2PE,CD=3PE,F是CE的中点.
(1)求证:BF∥平面ADP
(2)已知O是BD的中点,求证:BD⊥平面AOF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,ABED是长方形,平面ABED⊥平面ABC,AB=AC=5,BC=BE=6,且M是BC的中点
(Ⅰ) 求证:AM⊥平面BEC;
(Ⅱ) 求三棱锥B-ACE的体积;
(Ⅲ)若点Q是线段AD上的一点,且平面QEC⊥平面BEC,求线段AQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=logax(a>0且a≠1),若f(x1x2…x2017)=8,则f(x12)+f(x22)+…+f(x20172)的值等于(  )
A.2loga8B.16C.8D.4

查看答案和解析>>

同步练习册答案