精英家教网 > 高中数学 > 题目详情
9.如图,在直三棱柱ABC-A1B1C1中,A1B1⊥B1C1,E、F分别是A1B、A1C的中点.
求证:(1)EF∥平面ABC;
(2)平面A1FB1⊥平面BB1C1C.

分析 (1)利用三角形中位线的性质,证明EF∥BC,即可证明EF∥平面ABC;
(2)证明A1B1⊥平面BB1C1C,即可证明平面A1FB1⊥平面BB1C1C.

解答 证明:(1)∵E、F分别是A1B、A1C的中点,
∴EF∥BC.
又 EF?平面ABC,AB?平面ABC,
∴EF∥平面ABC.
(2)在直三棱柱ABC-A1B1C1中,BB1⊥平面A1B1C1
∵A1B1?平面A1B1C1
∴A1B1⊥BB1
又 A1B1⊥B1C1,BB1∩B1C1=B1,BB1,B1C1?平面BB1C1C.
∴A1B1⊥平面BB1C1C.
又 A1B1?平面A1FB1
∴平面A1FB1⊥平面BB1C1C.

点评 本题考查线面平行、垂直的证明,考查面面垂直,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)=cos(2x-\frac{π}{3})+2{sin^2}x$.
(Ⅰ)求函数f(x)的周期、单调递增区间;
(Ⅱ)当x∈$[0,\frac{π}{2}]$时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,五面体ABCDE,四边形ABDE是矩形,△ABC是正三角形,AB=1,AE=2,F是线段BC上一点,直线BC与平面ABD所成角为30°,CE∥平面ADF.
(1)试确定F的位置.
(2)求三棱锥A-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图1,已知矩形ABCD中,AB=2,$BC=2\sqrt{3}$,点E是边BC上的点,且$CE=\frac{1}{3}CB$,DE与AC相交于点H.现将△ACD沿AC折起,如图2,点D的位置记为D',此时$D'E=\frac{{\sqrt{30}}}{3}$.
(Ⅰ)求证:D'H⊥平面ABC;
(Ⅱ)求三棱锥B-AED'的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(t+1)lnx+tx2+3t,t∈R.
(1)若t=0,求证:当x≥0时,f(x+1)≥x-$\frac{1}{2}$x2
(2)若f(x)≥4x对任意x∈[1,+∞)恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中正确的是(  )
A.“m=$\frac{1}{2}$”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互平行”的充分不必要条件
B.“直线l垂直平面α内无数条直线”是“直线l垂直于平面α”的充分条件
C.已知$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$为非零向量,则“$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$”是“$\overrightarrow{b}$=$\overrightarrow{c}$”的充要条件
D.p:存在x∈R,x2+2x+2 016≤0.则¬p:任意x∈R,x2+2x+2016>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在直线2x-3y+5=0上求点P,使P点到A(2,3)的距离为$\sqrt{13}$,则P点坐标是(  )
A.(5,5)B.(-1,1)C.(5,5)或(-1,1)D.(5,5)或(1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知cosα=$-\frac{5}{13}$,角α是第二象限角,则tan(2π-α)等于(  )
A.$\frac{12}{13}$B.-$\frac{12}{13}$C.$\frac{12}{5}$D.-$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C的对边分别为a,b,c,且$\sqrt{3}bsinA=acosB$.
(Ⅰ)求B;
(Ⅱ)若$b=3,sinC=\sqrt{3}sinA$,求a,c.

查看答案和解析>>

同步练习册答案