精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=(t+1)lnx+tx2+3t,t∈R.
(1)若t=0,求证:当x≥0时,f(x+1)≥x-$\frac{1}{2}$x2
(2)若f(x)≥4x对任意x∈[1,+∞)恒成立,求t的取值范围.

分析 (1)求出函数f(x)的解析式,问题转化为证明ln(x+1)≥x-$\frac{1}{2}$x2;令g(x)=ln(x+1)-x+$\frac{1}{2}$x2,(x≥0);根据函数的单调性证明即可;
(2)问题转化为(t+1)lnx+tx2+3t-4x≥0,令φ(x)=(t+1)lnx+tx2+3t-4x,根据函数的单调性求出t的范围即可.

解答 解:(1)证明:t=0时,f(x)=lnx,f(x+1)=ln(x+1),
即证ln(x+1)≥x-$\frac{1}{2}$x2
令g(x)=ln(x+1)-x+$\frac{1}{2}$x2,(x≥0);
则g′(x)=$\frac{{x}^{2}}{x+1}$>0,
∴g(x)在(0,+∞)递增,
∴g(x)≥g(0)=0,
即l(x+1)≥x-$\frac{1}{2}$x2
(2)由f(x)≥4x⇒(t+1)lnx+tx2+3t-4x≥0,
令φ(x)=(t+1)lnx+tx2+3t-4x,
首先由φ(1)≥0⇒t≥1,
此时φ′(x)=$\frac{2{tx}^{2}-4x+t+1}{x}$,
令h(x)=2tx2-4x+t+1,
∵t≥1,∴△=16-8t(t+1)<0,
∴h(x)>0恒成立,
即φ′(x)>0,φ(x)在[1,+∞)递增,
故φ(x)≥φ(1)=4t-4≥0,
综上,t≥1.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{OM}=(3,-2),\overrightarrow{ON}=(-5,-1),则\overrightarrow{MN}等于$(  )
A.(8,-1)B.(-8,1)C.(-2,-3)D.(-15,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:
 交强险浮动因素和浮动费率比率表
  浮动因素浮动比率 
 A1 上一个年度未发生有责任道路交通事故 下浮10%
 A2 上两个年度未发生有责任道路交通事故 下浮20%
 A3 上三个及以上年度未发生有责任道路交通事故 下浮30%
 A4 上一个年度发生一次有责任不涉及死亡的道路交通事故 0%
 A5 上一个年度发生两次及两次以上有责任道路交通事故 上浮10%
 A6 上一个年度发生有责任道路交通死亡事故 上浮30%
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
 类型 A1 A2 A3 A4 A5 A6
 数量10 20 15 
(Ⅰ)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车中恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知侧棱与底面垂直的三棱柱ABC-A1B1C1满足AA1=2AB=2BC=4,∠ABC=90°,则其外接球的表面积为24π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,四棱锥P-ABCD的底面ABCD为平行四边形,NB=2PN,则三棱锥N-PAC与三棱锥D-PAC的体积之比为(  )
A.1:2B.1:3C.1:4D.1:6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在直三棱柱ABC-A1B1C1中,A1B1⊥B1C1,E、F分别是A1B、A1C的中点.
求证:(1)EF∥平面ABC;
(2)平面A1FB1⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中的真命题为(  )
A.?x0∈Z,使得1<4x0<3B.?x0∈Z,使得5x0+1=0
C.?x∈R,x2-1=0D.?x∈R,x2+x+2>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知递增的等差数列{an}中,a2、a5是方程x2-12x+27=0的两根,数列{an}为等比数列,b1=$\frac{2}{3},b_2+b_3=\frac{8}{27}$.
(1)求数列{an},{bn}的通项公式;
(2)记cn=an•bn,数列{cn}的前n项和为Tn.求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,那么输出的S为(  )
A.-2B.$\frac{1}{2}$C.$\frac{4}{3}$D.3

查看答案和解析>>

同步练习册答案