分析 (1)求出函数f(x)的解析式,问题转化为证明ln(x+1)≥x-$\frac{1}{2}$x2;令g(x)=ln(x+1)-x+$\frac{1}{2}$x2,(x≥0);根据函数的单调性证明即可;
(2)问题转化为(t+1)lnx+tx2+3t-4x≥0,令φ(x)=(t+1)lnx+tx2+3t-4x,根据函数的单调性求出t的范围即可.
解答 解:(1)证明:t=0时,f(x)=lnx,f(x+1)=ln(x+1),
即证ln(x+1)≥x-$\frac{1}{2}$x2;
令g(x)=ln(x+1)-x+$\frac{1}{2}$x2,(x≥0);
则g′(x)=$\frac{{x}^{2}}{x+1}$>0,
∴g(x)在(0,+∞)递增,
∴g(x)≥g(0)=0,
即l(x+1)≥x-$\frac{1}{2}$x2;
(2)由f(x)≥4x⇒(t+1)lnx+tx2+3t-4x≥0,
令φ(x)=(t+1)lnx+tx2+3t-4x,
首先由φ(1)≥0⇒t≥1,
此时φ′(x)=$\frac{2{tx}^{2}-4x+t+1}{x}$,
令h(x)=2tx2-4x+t+1,
∵t≥1,∴△=16-8t(t+1)<0,
∴h(x)>0恒成立,
即φ′(x)>0,φ(x)在[1,+∞)递增,
故φ(x)≥φ(1)=4t-4≥0,
综上,t≥1.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.
科目:高中数学 来源: 题型:选择题
| A. | (8,-1) | B. | (-8,1) | C. | (-2,-3) | D. | (-15,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 交强险浮动因素和浮动费率比率表 | ||
| 浮动因素 | 浮动比率 | |
| A1 | 上一个年度未发生有责任道路交通事故 | 下浮10% |
| A2 | 上两个年度未发生有责任道路交通事故 | 下浮20% |
| A3 | 上三个及以上年度未发生有责任道路交通事故 | 下浮30% |
| A4 | 上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% |
| A5 | 上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% |
| A6 | 上一个年度发生有责任道路交通死亡事故 | 上浮30% |
| 类型 | A1 | A2 | A3 | A4 | A5 | A6 |
| 数量 | 10 | 5 | 5 | 20 | 15 | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1:2 | B. | 1:3 | C. | 1:4 | D. | 1:6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈Z,使得1<4x0<3 | B. | ?x0∈Z,使得5x0+1=0 | ||
| C. | ?x∈R,x2-1=0 | D. | ?x∈R,x2+x+2>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com