精英家教网 > 高中数学 > 题目详情

【题目】盒子中有大小相同的球6个,其中标号为1的球2个,标号为2的球3个.标号为3的球1个,第一次从盒子中任取1个球,放回后第二次再任取1个球 (假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ξ.
(1)求随机变量ξ的分布列:
(2)求随机变量ξ的期望Eξ.

【答案】
(1)解:由题意可得,随机变量ξ的取值是2、3、4、5、6.

则随机变量ξ的分布列如下:

P(ξ=2)=

P(ξ=3)=

P(ξ=4)=

P(ξ=5)= =

P(ξ=6)= =

∴变量ξ的分布列是:


(2)解:随机变量ξ的期望

Eξ=2× +3× +4× +5× +6× =


【解析】(1)首先分析题目已知第一次从盒子中任取1个球,放回后第二次再任取1个球.记第一次与第二次取到球的标号之和为ξ.则可分析得到随机变量ξ可以取值是2、3、4、5、6.然后分别求出概率即可得到分布.(2)由(1)的分布列,再根据期望公式求出期望值即可.
【考点精析】认真审题,首先需要了解离散型随机变量及其分布列(在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求和:Sn= + +…+ ,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x2﹣x﹣ )eax(a>0).
(1)求函数y=f(x)的最小值;
(2)若存在唯一实数x0 , 使得f(x0)+ =0成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1在平面直角坐标系中的参数方程为 (t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,有曲线C2:ρ=2cosθ-4sinθ

(1)将C1的方程化为普通方程,并求出C2的平面直角坐标方程

(2)求曲线C1C2两交点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的极坐标方程为ρcos(θ﹣ )=﹣1,曲线C2的极坐标方程为ρ=2 cos(θ﹣ ).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(1)求曲线C2的直角坐标方程;
(2)求曲线C2上的动点M到曲线C1的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=Asin(2x+ )(x∈R)的图象过点P( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)已知f( + )= ,﹣ <a<0,求cos(a﹣ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax2﹣(a﹣1)x﹣lnx(a∈R且a≠0).
(1)求函数f(x)的单调递增区间;
(2)记函数y=F(x)的图象为曲线C.设点A(x1 , y1),B(x2 , y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0 , y0),使得:①x0= ;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值和谐切线”.当a=2时,函数f(x)是否存在“中值和谐切线”,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|x2﹣2x﹣3<0},B={x||x﹣1|<a}.
(1)若AB,求实数a的取值范围;
(2)若BA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某辆汽车以x km/h的速度在高速公路上匀速行驶考虑到高速公路行车安全要求60≤x≤120时,每小时的油耗所需要的汽油量,其中k为常数,若汽车以120km/h的速度行驶时,每小时的油耗为11.5L.

1k的值

2求该汽车每小时油耗的最小值.

查看答案和解析>>

同步练习册答案