【题目】以直角坐标系的原点为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
,直线
的参数方程为
(
为参数).
(1)求曲线
的参数方程与直线
的普通方程;
(2)设点过
为曲线
上的动点,点
和点
为直线
上的点,且满足
为等边三角形,求
边长的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,已知四边形ABCD是正方形,AE⊥平面ABCD,PD∥AE,PD=AD=2EA=2,G,F,H分别为BE,BP,PC的中点.
![]()
(1)求证:平面ABE⊥平面GHF;
(2)求直线GH与平面PBC所成的角θ的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】嫦娥四号任务经过探月工程重大专项领导小组审议,通过并且正式开始实施,如图所示.假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点
变轨进入以月球球心
为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在
点第二次变轨进入仍以
为一个焦点的椭圆轨道Ⅱ绕月飞行.若用
和
分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用
和
分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,则下列关系中正确的是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某项针对我国《义务教育数学课程标准》的研究中,列出各个学段每个主题所包含的条目数(如下表),下图是统计表的条目数转化为百分比,按各学段绘制的等高条形图,由图表分析得出以下四个结论,其中错误的是( )
![]()
![]()
A.除了“综合实践”外,其它三个领域的条目数都随着学段的升高而增加,尤其“图象几何” 在第三学段增加较多,约是第二学段的
倍.
B.所有主题中,三个学段的总和“图形几何”条目数最多,占50%,综合实践最少,约占4% .
C.第一、二学段“数与代数”条目数最多,第三学段“图形几何”条目数最多.
D.“数与代数”条目数虽然随着学段的增长而增长,而其百分比却一直在减少.“图形几何”条目数,百分比都随学段的增长而增长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学调查防疫期间学生居家每天锻炼时间情况,从高一、高二年级学生中分别随机抽取100人,由调查结果得到如下的频率分布直方图:
![]()
(Ⅰ)写出频率分布直方图(高一)中
的值;记高一、高二学生100人锻炼时间的样本的方差分别为
,
,试比较
,
的大小(只要求写出结论);
(Ⅱ)估计在高一、高二学生中各随机抽取1人,恰有一人的锻炼时间大于20分钟的概率;
(Ⅲ)由频率分布直方图可以认为,高二学生锻炼时间
服从正态分布
.其中
近似为样本平均数
,
近似为样本方差,且每名学生锻炼时间相互独立,设
表示从高二学生中随机抽取10人,其锻炼时间位于
的人数,求
的数学期望.
注:①同一组数据用该区间的中点值作代表,计算得![]()
②若
,则
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某初中学校学生睡眠状况,在该校全体学生中随机抽取了容量为120的样本,统计睡眠时间(单位:
).经统计,时间均在区间
内,将其按
,
,
,
,
,
分成6组,制成如图所示的频率分布直方图:
![]()
(1)世界卫生组织表明,该年龄段的学生睡眠时间
服从正态分布
,其标准为:该年龄段的学生睡眠时间的平均值
,方差
.根据
原则,用样本估计总体,判断该初中学校学生睡眠时间在区间
上是否达标?
(参考公式:
,
,
)
(2)若规定睡眠时间不低于
为优质睡眠.已知所抽取的这120名学生中,男、女睡眠质量人数如下
列联表所示:
优质睡眠 | 非优质睡眠 | 合计 | |
男 | 60 | ||
女 | 19 | ||
合计 |
将列联表数据补充完整,并判断是否有
的把握认为优质睡眠与性别有关系,并说明理由;
下面的临界值表仅供参考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
经过点P(2,1),且离心率为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足
,直线PM、PN分别交椭圆于A,B.探求直线AB是否过定点,如果经过定点请求出定点的坐标,如果不经过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的奇数项是公差为
的等差数列,偶数项是公差为
的等差数列,
是数列
的前
项和, ![]()
(1)若
,求
;
(2)已知
,且对任意的
,有
恒成立,求证:数列
是等差数列;
(3)若
,且存在正整数
,使得
,求当
最大时,数列
的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com