精英家教网 > 高中数学 > 题目详情
(2012•鹰潭模拟)已知函数f(x)=ax+lnx(a∈R)
(1)求f(x)的单调区间;
(2)设g(x)=x2-2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.
分析:(1)先求f(x)的导数,再对参数a进行讨论,利用导数函数值的正负,从而可求f(x)的单调区间;
(2)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.
解答:解:(1)f′(x)=a+
1
x
,x>0
…(2分)
当a≥0时,由于x∈(0,+∞),f′(x)>0,所以函数f(x)的单调增区间为(0,+∞),…(4分)
当a<0时,令f'(x)=0,得x=-
1
a

当x变化时,f'(x)与f(x)变化情况如下表:

所以函数f(x)的单调增区间为(0,-
1
a
),函数f(x)的单调减区间为(-
1
a
,+∞)
…(6分)
(2)由已知,转化为f(x)max<g(x)max…(8分)
因为g(x)=x2-2x+2=(x-1)2+1,x∈[0,1],
所以g(x)max=2…(9分)
由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.
(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)     …(10分)
当a<0时,f(x)在(0,-
1
a
)
上单调递增,在(-
1
a
,+∞)
上单调递减,
故f(x)的极大值即为最大值,f(-
1
a
)=-1+ln(-
1
a
)=-1-ln(-a)
,…(11分)
所以2>-1-ln(-a),解得a<-
1
e3
.…(12分)
点评:本题重点考查导数知识的运用,考查函数的单调性,考查函数的最值,考查分类讨论的数学思想,解题的关键是利用导数确定函数的单调性
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•鹰潭模拟)已知三棱锥A-BOC,OA、OB、OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的面所围成的几何体的体积为
π
6
或36-
π
6
π
6
或36-
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•鹰潭模拟)已知函数y=f(x)是定义在实数集R上的奇函数,且当x∈(-∞,0)时,xf′(x)<f(-x)成立(其中f′(x)是f(x)的导函数),若a=
3
f(
3
)
b=(lg3)f(lg3),  c=(log2
1
4
)f(log2
1
4
)
,则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•鹰潭模拟)已知等比数列{an}中,公比q>1,且a1+a6=8,a3a4=12,则
a2012
a2007
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•鹰潭模拟)如果函数f(x)=sin(ωπx-
π
4
) (ω>0)
在区间(-1,0)上有且仅有一条平行于y轴的对称轴,则ω的取值范围是
1
4
<ω≤
5
4
1
4
<ω≤
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•鹰潭模拟)函数y=
1
x
•cosx
在坐标原点附近的图象可能是(  )

查看答案和解析>>

同步练习册答案