【题目】设全集为R,.
(1)求及
(2)若,求实数a的取值范围.
【答案】(1)A∩B={x|3<x≤5},R(A∩B)={x|x≤3或x>5},
(2)(﹣∞,]∪[6,+∞)
【解析】
(1)由A={x|2<x≤5},B={x|3<x<8},能求出A∩B及R(A∩B).
(2)由A∩B={x|3<x≤5},(A∩B)∩C=,当C=时,a﹣1≥2a,当C≠时,或,由此能求出实数a的取值范围.
(1)因为A={x|2<x≤5},B={x|3<x<8},
所以A∩B={x|3<x≤5},
R(A∩B)={x|x≤3或x>5}.
(2)因为A∩B={x|3<x≤5},(A∩B)∩C=,
当C=时,a﹣1≥2a,解得a≤﹣1;
当C≠时,或,
解得﹣1<a或a≥6.
综上,实数a的取值范围是(﹣∞,]∪[6,+∞).
科目:高中数学 来源: 题型:
【题目】某公司的班车在8:00准时发车,小田与小方均在7:40至8:00之间到达发车点乘坐班车,且到达发车点的时刻是随机的,则小田比小方至少早5分钟到达发车点的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: (a﹥b﹥0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:|MA|·|MB|=|MC|·|MD|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC底面BCDE,BC=2,CD=,AB=AC
(1)证明.
(2)设侧面ABC为等边三角形,求二面角C-AD-E的余弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com