精英家教网 > 高中数学 > 题目详情

【题目】已知R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax﹣ax+2(a>0,且a≠1),若g(2)=a,则f(2)的值为(
A.
B.2
C.
D.a2

【答案】A
【解析】解:由题意得,f(x)+g(x)=ax﹣ax+2,
令x=2得,f(2)+g(2)=a2﹣a2+2,①
令x=﹣2得,f(﹣2)+g(﹣2)=a2﹣a2+2,
因为在R上f(x)是奇函数,g(x)是偶函数,
所以f(﹣2)=﹣f(2),g(﹣2)=g(2),
则﹣f(2)+g(2)=a2﹣a2+2,②,
①+②得,g(2)=2,又g(2)=a,即a=2,
代入①得,f(2)=
故选A.
分别令x=2、﹣2代入f(x)+g(x)=ax﹣ax+2列出方程,根据函数的奇偶性进行转化,结合条件求出a的值,代入其中一个方程即可求出f(2)的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个袋子中装有三个编号分别为1,2,3的红球和三个编号分别为1,2,3的白球,三个红球按其编号分别记为a1 , a2 , a3 , 三个白球按其编号分别记为b1 , b2 , b3 , 袋中的6个球除颜色和编号外没有任何差异,现从袋中一次随机地取出两个球,
(1)列举所有的基本事件,并写出其个数;
(2)规定取出的红球按其编号记分,取出的白球按其编号的2倍记分,取出的两个球的记分之和为一次取球的得分,求一次取球的得分不小于6的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的各棱长都相等,中点,则异面直线所成角的余弦值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb的不同值的个数是( )
A.9
B.10
C.18
D.20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣t)|x|(t∈R).
(1)讨论y=f(x)的奇偶性;
(2)当t>0时,求f(x)在区间[﹣1,2]的最小值h(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:

根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,甲:

为了评价两种模型的拟合效果,完成以下任务:

(1)(ⅰ)完成下表(计算结果精确到0.1):

)分别计算模型甲与模型乙的残差平方和,并通过比较,的大小,判断哪个模型拟合效果更好.

(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,表示同一函数的一组是(
A.
B.
C.f(x)=lnx2 , g(x)=2lnx
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0
(1)求证:f(x)是奇函数;
(2)若 ,试求f(x)在区间[﹣2,6]上的最值;
(3)是否存在m,使f(2( 2﹣4)+f(4m﹣2( ))>0对任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知﹣3≤log x≤﹣ ,求函数f(x)=log2 log2 的值域.

查看答案和解析>>

同步练习册答案