精英家教网 > 高中数学 > 题目详情
11.抛物线C:x2=2py(p>0)的焦点为F,l为C的准线,P∈C.且|PF|=6,过P作l的垂线,垂足为M,若△FMP为正三角形,则p=(  )
A.2B.3C.4D.5

分析 根据正三角形的性质,求得丨MF丨=6,∠PMF=$\frac{π}{3}$,则∠FMN=$\frac{π}{6}$,所以p=丨FN丨=3.

解答 解:设准线l与y轴相交于N,
由|PF|=6,△FMP为正三角形,则丨MF丨=6,∠PMF=$\frac{π}{3}$
由PM⊥l,∠FMN=$\frac{π}{6}$,
∴丨FN丨=3,即p=丨FN丨=3,
∴p=3,
故选:B.

点评 本题考查抛物线的简单几何性质,考查数形结合思想,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的一条渐近线与直线2x+y-3=0垂直,则该双曲线的离心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\frac{{{e^x}+1}}{{x({{e^x}-1})}}$(其中e为自然对数的底数)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与抛物线的交点为Q,且$|{QF}|=\frac{5}{4}|{PQ}|$.
(1)求抛物线的方程;
(2)如图所示,过F的直线l与抛物线相交于A,D两点,与圆x2+(y-1)2=1相交于B,C两点(A,B两点相邻),过A,D两点分别作我校的切线,两条切线相交于点M,求△ABM与△CDM的面积之积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=2cos(ωx+$\frac{3π}{2}$)(ω>0),若存在m∈[$-\frac{2π}{3}$,0),n∈(0,$\frac{π}{4}$],使得f(m)-f(n)=0.则实数ω的取值范围为(  )
A.($\frac{5}{2}$,+∞)B.($\frac{3}{4}$,+∞)C.(2,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在棱长为2的正三棱柱ABC-A1B1C1中,D,E分别是BC,BB1的中点.
(1)求证:A1B∥AC1D
(2)求证:CE⊥面AC1D
(3)求二面角C-AC1-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x+y-3≤0}\\{x-2y-3≤0}\end{array}\right.$,则目标函数z=2x+y的最小值为(  )
A.6B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源:2016-2017学年江西省高一上学期第一次月考数学试卷(解析版) 题型:解答题

解下列关于x的不等式(1)

(2)

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河南省新乡市高二上学期入学考数学卷(解析版) 题型:选择题

A. B. C. D.

查看答案和解析>>

同步练习册答案