精英家教网 > 高中数学 > 题目详情
8.已知点P1的球坐标是(2$\sqrt{2}$,$\frac{2π}{3}$,$\frac{π}{4}$),点P2的柱坐标是(2$\sqrt{3}$,$\frac{π}{6}$,-$\sqrt{2}$),则|P1P2|=3-$\sqrt{3}$.

分析 球坐标P1(r,θ,φ),利用公式$\left\{\begin{array}{l}{x=rsinθcosφ}\\{y=rsinθsinφ}\\{z=rcosθ}\end{array}\right.$即可化为直角坐标.柱坐标(r,θ,z),利用公式$\left\{\begin{array}{l}{x=rsinθ}\\{y=rcosθ}\\{z=z}\end{array}\right.$即可化为直角坐标.

解答 解:点P1的球坐标是(2$\sqrt{2}$,$\frac{2π}{3}$,$\frac{π}{4}$),可得直角坐标P1$(2\sqrt{2}sin\frac{2π}{3}cos\frac{π}{4},2\sqrt{2}sin\frac{2π}{3}sin\frac{π}{4},2\sqrt{2}cos\frac{2π}{3})$,化为P1$(\sqrt{3},\sqrt{3},-\sqrt{2})$.
由点P2的柱坐标是(2$\sqrt{3}$,$\frac{π}{6}$,-$\sqrt{2}$),可得直角坐标P2$(2\sqrt{3}cos\frac{π}{6},2\sqrt{3}sin\frac{π}{6},-\sqrt{2})$,即P2$(3,\sqrt{3},-\sqrt{2})$.
$\sqrt{(3-\sqrt{3})^{2}+(\sqrt{3}-\sqrt{3})^{2}+(-\sqrt{2}+\sqrt{2})^{2}}$=3$-\sqrt{3}$.
故答案为:3$-\sqrt{3}$.

点评 本题考查了球坐标与柱坐标化为直角坐标的方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知随机变量X~N(μ,σ2),则Y=aX+b服从(  )
A.Y~N(aμ,σ2B.Y~N(0,1)C.Y~N($\frac{μ}{a}$,$\frac{σ2}{b}$)D.Y~N(aμ+b,a2σ2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.篮球比赛中每支球队的出场阵容由5名队员组成,2017年的NBA篮球赛中,休斯顿火箭队采取了“八人轮换”的阵容,即每场比赛只有8名队员有机会出场,这8名队员中包含两名中锋,两名控球后卫,若要求每一套出场阵容中有且仅有一名中锋,至少包含一名控球后卫,则休斯顿火箭队的主教练一共有(  )种出场阵容的选择.
A.16B.28C.84D.96

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=$\sqrt{7}$,PA=$\sqrt{3}$,∠ABC=120°,G为线段PC上的点.
(Ⅰ)证明:BD⊥面PAC
(Ⅱ)若G是PC的中点,求DG与APC所成的角的正弦值;
(Ⅲ)若G满足PC⊥面BGD,求二面角G-BD-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2sin(2x+$\frac{π}{6}$)-1
(1)求f(x)的最小正周期及最大值
(2)求函数f(x)的零点的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)用分析法证明:$\sqrt{6}-\sqrt{5}>2\sqrt{2}-\sqrt{7}$
(2)已知函数f(x)对其定义域的任意两个实数a,b.当a<b时,都有f(a)<f(b).用反证法证明f(x)=0至多有一个实根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线l:x-y-5=0的纵截距是(  )
A.5B.1C.-5D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{{{x^2}-1}}$.
(1)求f(x)的定义域;
(2)判断函数f(x)在(1,+∞)上的单调性,并用单调性的定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在数列{an}中,a1=4,an+1=2an-1,则a4等于(  )
A.7B.13C.25D.49

查看答案和解析>>

同步练习册答案