精英家教网 > 高中数学 > 题目详情

【题目】某省的一个气象站观测点在连续4天里记录的AQI指数M与当天的空气水平可见度(单位:cm)的情况如表1:

900

700

300

100

0.5

3.5

6.5

9.5

该省某市2017年11月份AQI指数频数分布如表2:

频数(天)

3

6

12

6

3

<>(1)设,若之间是线性关系,试根据表1的数据求出关于的线性回归方程;

(2)小李在该市开了一家洗车店,洗车店每天的平均收入与AQI指数存在相关关系如表3:

日均收入(元)

-2000

-1000

2000

6000

8000

根据表3估计小李的洗车店2017年11月份每天的平均收入.

附参考公式:,其中.

【答案】(1);(2)2400

【解析】试题分析:(1)计算,根据题中公式计算,从而得解;

(2)由AQI指数频数分布可知亏损和盈利的天数,进而利用收入乘以天数求和后求均值即可.

试题解析:

(1)

.

关于的线性回归方程为.

(2)根据表3可知,该月30天中有3天每天亏损2000元,有6天每天亏损1000元,有12天每天收入2000元,有6天每天收入6000元,有3天每天收入8000元,估计小李洗车店2017年11月份每天的平均收入为 (元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元,2000元.甲、乙产品都需要在A、B两种设备上加工,在每台A、B设备上加工一件甲所需工时分别为1,2,加工一件乙设备所需工时分别为2,1.A、B两种设备每月有效使用台时数分别为400和500,分别用表示计划每月生产甲,乙产品的件数.

(Ⅰ)用列出满足生产条件的数学关系式,并画出相应的平面区域;

(Ⅱ)问分别生产甲、乙两种产品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线=1(a>0,b>0)的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于AB两点,F1为左焦点.

(1)求双曲线的方程;

(2)若△F1AB的面积等于6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若将判断框内“”改为关于的不等式“”且要求输出的结果不变,则正整数的取值是

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数.

1)已知的解集为,求实数的值;

2)已知,设是关于的方程的两根,且,求实数的值;

3)已知满足,且关于的方程的两实数根分别在区间内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是直角梯形, 的中点,.

(Ⅰ)证明:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)线段上是否存在一点,使得直线平面. 若存在,确定点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市周年庆典,设置了一项互动游戏如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头指向每个区域的可能性都是相等的.要求每个家庭派一名儿童和一位成人先后各转动一次游戏转盘,记为,若一个家庭总得分,假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动,游戏规定:

①若,则该家庭可以获得一等奖一份;

②若,则该家庭可以获得二等奖一份;

,则该家庭可以获得纪念奖一份.

(1)求一个家庭获得纪念奖的概率;

(2)试比较同一个家庭获得一等奖和二等奖概率的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(1)当时,求曲线处的切线方程;

(2)求函数上的最小值(为自然对数的底数);

(3)是否存在实数,使得对任意正实数均成立?若存在,求出所有满足条件的实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.

(1)写出第一次服药后,y与t之间的函数关系式y=f(t);

(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?

查看答案和解析>>

同步练习册答案