精英家教网 > 高中数学 > 题目详情

已知是公差不为零的等差数列,,且的等比中项,求:
(1)数列的通项公式;
(2).

(1)(2)

解析试题分析:(1)用基本量法,据的等比中项,可求得公差,从而写出通项公式;(2)由上题可知式子是以为首项,以为公比的等比数列的前n项和,易求.
试题解析:解:(1)由题设知公差,由的等比中项得,解得(舍去),故的通项公式为.
(2)由(1)知成以为首项,以为公比的等比数列,
由等比数列前项和公式得

考点:等差数列与等比数列的基本概念,等比数列前n项和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

给定正整数,若项数为的数列满足:对任意的,均有(其中),则称数列为“Γ数列”.
(1)判断数列是否是“Γ数列”,并说明理由;
(2)若为“Γ数列”,求证:恒成立;
(3)设是公差为的无穷项等差数列,若对任意的正整数
均构成“Γ数列”,求的公差

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是首项为a,公差为d的等差数列是其前n项的和。记,其中c为实数。
(1)若,且成等比数列,证明:
(2)若是等差数列,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和为
(1)证明:数列是等差数列,并求
(2)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项,公差,且分别是等比数列.
(1)求数列的通项公式;
(2)设数列对任意正整数均有成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,
已知,,,是数列的前项和.
(1)求数列的通项公式;(2)求;
(3)求满足的最大正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从数列中抽出一些项,依原来的顺序组成的新数列叫数列的一个子列.
(1)写出数列的一个是等比数列的子列;
(2)设是无穷等比数列,首项,公比为.求证:当时,数列不存在
是无穷等差数列的子列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,且对任意的成等比数列,其公比为
(1)若
(2)若对任意的成等差数列,其公差为
①求证:成等差数列,并指出其公差;
②若,试求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}是递增数列,且满足a4·a7=15,a3+a8=8.
(1)求数列{an}的通项公式;
(2)令bn(n≥2),b1,求数列{bn}的前n项和Sn.

查看答案和解析>>

同步练习册答案