精英家教网 > 高中数学 > 题目详情
6.已知i是虚数单位,则复数$\frac{1+i}{1-i}$的实部为0.

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:∵$\frac{1+i}{1-i}$=$\frac{(1+i)^{2}}{(1-i)(1+i)}=\frac{2i}{2}=i$,
∴复数$\frac{1+i}{1-i}$的实部为0.
故答案为:0.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.等差数列{an}的前n项和记为Sn,若S10=10,S30=60,则S40=100.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}|2+lnx|,x>0\\-{x^2}-2x+1,x≤0\end{array}\right.$存在互不相等实数a,b,c,d,有f(a)=f(b)=f(c)=f(d)=m.现给出三个结论:
(1)m∈[1,2);
(2)a+b+c+d∈[e-3+e-1-2,e-4-1),其中e为自然对数的底数;
(3)关于x的方程f(x)=x+m恰有三个不等实根.
正确结论的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}是首项为1,公差为2的等差数列,数列{bn}满足关系$\frac{a_1}{b_1}+\frac{a_2}{b_2}+\frac{a_3}{b_3}+$$…+\frac{a_n}{b_n}=\frac{1}{2^n}$,数列{bn}的前n项和为Sn,则S5的值为(  )
A.-454B.-450C.-446D.-442

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.不等式 $\frac{x-3}{x+7}<0$的解集是(-7,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)满足f(x)=f($\frac{1}{x}$),当x∈[1,4]时,f(x)=lnx,若在区间x∈[$\frac{1}{4}$,4]内,函数g(x)=f(x)-ax与x轴有三个不同的交点,则实数a的取值范围是[$\frac{ln2}{2}$,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.二项式(x+1)n(n∈N*)的展开式中x2项的系数为15,则n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.△ABC的内角A,B,C的对边分别为a,b,c,已知4accos2$\frac{A+C}{2}$=a2+c2-b2
(Ⅰ)求B;
(II)若c=3,且AC边的中线BM=$\frac{\sqrt{13}}{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=lg({x+\sqrt{{x^2}+1}})+2x+sinx,f({x_1})+f({x_2})>0$,则下列不等式中正确的是(  )
A.x1>x2B.x1<x2C.x1+x2<0D.x1+x2>0

查看答案和解析>>

同步练习册答案