如图,F1,F2是离心率为
的椭圆C:
(a>b>0)的左、右焦点,直线
:x=-
将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.![]()
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 求
的取值范围.
(Ⅰ)
;(Ⅱ)
.
解析试题分析:(Ⅰ)根据题中的已知条件列有关
的方程,求出
,然后根据离心率求出
,最后再根据
、
、
三者之间的关系求出
的值,从而确定椭圆
的方程;(Ⅱ)先设点
的坐标
,然后根据已知条件将直线
的方程用
进行表示,再联立直线
与椭圆
的方程,结合韦达定理将
表示为含
为代数式,然后再利用不等式的性质求出
的取值范围.
试题解析:(Ⅰ)设F2(c,0),则
=
,所以c=1.
因为离心率e=
,所以a=
.
所以椭圆C的方程为
.
(Ⅱ) 当直线AB垂直于x轴时,直线AB方程为x=-
,此时P(
,0)、Q(
,0),
.
当直线AB不垂直于x轴时,设直线AB的斜率为k,M(-
,m) (m≠0),A(x1,y1),B(x2,y2).
由
得(x1+x2)+2(y1+y2)
=0,
则-1+4mk=0,故k=
.
此时,直线PQ斜率为
,PQ的直线方程为
.即
.
联立
消去y,整理得
.
所以
,
.
于是
(x1-1)(x2-1)+y1y2![]()
![]()
![]()
.
令t=1+32m2,1<t<29,则
.
又1<t<29,所以
.
综上,
的取值范围为
.
考点:椭圆的方程、平面向量的数量积、韦达定理
科目:高中数学 来源: 题型:解答题
设
是抛物线![]()
上相异两点,
到y轴的距离的积为
且
.![]()
(1)求该抛物线的标准方程.
(2)过Q的直线与抛物线的另一交点为R,与
轴交点为T,且Q为线段RT的中点,试求弦PR长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知定点A(-2,0)、B(2,0),异于A、B两点的动点P满足
,其中k1、k2分别表示直线AP、BP的斜率.![]()
(Ⅰ)求动点P的轨迹E的方程;
(Ⅱ)若N是直线x=2上异于点B的任意一点,直线AN与(I)中轨迹E交予点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),点C(1,0),求证:|CM|·|CN| 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的左、右焦点分别为
、
,P为椭圆
上任意一点,且
的最小值为
.
(1)求椭圆
的方程;
(2)动圆
与椭圆
相交于A、B、C、D四点,当
为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆的左、右焦点分别为
和
,且椭圆过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
作不与
轴垂直的直线
交该椭圆于
两点,
为椭圆的左顶点,试判断
的大小是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知一条曲线
在
轴右边,
上每一点到点
的距离减去它到
轴距离的差都等于1.
(1)求曲线C的方程;
(2)若过点M
的直线
与曲线C有两个交点
,且
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,A,B是椭圆
的两个顶点,
,直线AB的斜率为
.求椭圆的方程;(2)设直线
平行于AB,与x,y轴分别交于点M、N,与椭圆相交于C、D,
证明:
的面积等于
的面积.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com