精英家教网 > 高中数学 > 题目详情
7.已知定义在(0,+∞)上的函数f(x)的导函数为f'(x),满足x2f'(x)+xf(x)=lnx,f(e)=$\frac{1}{e}$,则f(x)(  )
A.有极大值,无极小值B.有极小值,无极大值
C.既有极大值又有极小值D.既无极大值也无极小值

分析 由题意知[xf(x)]′=$\frac{lnx}{x}$,从而由积分可知xf(x)=$\frac{1}{2}$(lnx)2+c,从而解得f(x)的解析式,从而再求导判断函数的单调性即可判断函数的极值.

解答 解:∵x2f′(x)+xf(x)=lnx,
∴xf′(x)+f(x)=$\frac{lnx}{x}$,
∴[xf(x)]′=$\frac{lnx}{x}$,
∴xf(x)=$\frac{1}{2}$(lnx)2+c,
又∵f(e)=$\frac{1}{e}$,
∴e•$\frac{1}{e}$=$\frac{1}{2}$+c,
故c=$\frac{1}{2}$,
∴f(x)=$\frac{l{n}^{2}x}{2x}$+$\frac{1}{2x}$,
∴f′(x)=$\frac{2lnx×\frac{1}{x}×x-(l{n}^{2}x+1)}{2{x}^{2}}$=$\frac{-(lnx-1)^{2}}{2{x}^{2}}$≤0,
∴f(x)在区间(0,+∞)上是减函数,
∴既无极大值又无极小值.
故选D.

点评 本题考查导数的综合应用,考查了导数的综合应用及积分的应用,考查转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.为了得到函数$y=2sin({2x-\frac{π}{3}})$的图象,只需把函数$f(x)=2\sqrt{3}sin({x+\frac{π}{4}})cos({x+\frac{π}{4}})-sin({2x+3π})$的图象向右平移$\frac{π}{3}$个单位长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若由曲线y=x2+k2与直线y=2kx及y轴所围成的平面图形的面积S=9,则k=(  )
A.3$\sqrt{3}$B.-3或3C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.为了判断高中学生的文理科选修是否与性别有关系,随机调查了50名学生,得到如下2×2的列联表:
理科文科
1310
720
附:
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
根据表中数据,得到${x^2}=\frac{{50×{{({13×20-10×7})}^2}}}{23×27×20×30}≈4.844$,则认为选修文理科与性别有关系的可能性不低于95%.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知矩形的长为10,宽为5(如图所示),在矩形内随机地投掷1000颗黄豆,数得落在阴影部分的黄豆为560颗,则可以估计阴影部分的面积为2.8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆心在x轴上的圆C与直线l:4x+3y-6=0切于点$M({\frac{3}{5},\frac{6}{5}})$.
(1)求圆C的标准方程;
(2)已知N(2,1),经过原点,且斜率为正数的直线m与圆C交于P(x1,y1),Q(x2,y2)两点,若|PN|2+|QN|2=24,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|$\frac{3x-4}{2-x}$≥0},B={x|x2-2x<0},则A∩B=(  )
A.[$\frac{4}{3}$,2)B.[$\frac{3}{4}$,2]C.($\frac{3}{4}$,2)D.(-$∞,\frac{3}{4}$)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,正方体ABCD-A1B1C1D1的棱长为1,M,N分别是线段A1C1和BD上的动点,则下列判断正确的是①③④⑤(把你认为正确的序号都填上) 
①线段MN有最小值,且最小值为1
②不论M,N如何运动,线段MN和B1D都不可能垂直
③存在一个位置,使得MN所在的直线与四个侧面都平行
④$|{MN}|=\sqrt{2}$的情况只有四种
⑤若M,N,B,C四点能构成三棱锥,其体积只与点N的位置有关,与M无关.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在四边形ABCD中,∠BAD=120°,∠BCD=60°,cosD=-$\frac{1}{7}$,AD=DC=2.
(Ⅰ)求cos∠DAC及AC的长;
(Ⅱ)求BC的长.

查看答案和解析>>

同步练习册答案