16£®Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1µÄÀⳤΪ1£¬M£¬N·Ö±ðÊÇÏß¶ÎA1C1ºÍBDÉϵ͝µã£¬ÔòÏÂÁÐÅжÏÕýÈ·µÄÊǢ٢ۢܢݣ¨°ÑÄãÈÏΪÕýÈ·µÄÐòºÅ¶¼ÌîÉÏ£© 
¢ÙÏß¶ÎMNÓÐ×îСֵ£¬ÇÒ×îСֵΪ1
¢Ú²»ÂÛM£¬NÈçºÎÔ˶¯£¬Ïß¶ÎMNºÍB1D¶¼²»¿ÉÄÜ´¹Ö±
¢Û´æÔÚÒ»¸öλÖã¬Ê¹µÃMNËùÔÚµÄÖ±ÏßÓëËĸö²àÃæ¶¼Æ½ÐÐ
¢Ü$|{MN}|=\sqrt{2}$µÄÇé¿öÖ»ÓÐËÄÖÖ
¢ÝÈôM£¬N£¬B£¬CËĵãÄܹ¹³ÉÈýÀâ×¶£¬ÆäÌå»ýÖ»ÓëµãNµÄλÖÃÓйأ¬ÓëMÎ޹أ®

·ÖÎö µ±M£¬N·Ö±ðÊÇÏß¶ÎA1C1ºÍBDÉϵÄÖеãʱ£¬ÓÉÒìÃæÖ±ÏߵľàÀ룬¼´¿ÉÅжϢ٣»
µ±MÓëC1ÖØºÏ£¬NÓëBÖØºÏ£¬ÓÉÈý´¹Ïß¶¨Àí£¬¼´¿ÉÅжϢڣ»
µ±M£¬N·Ö±ðÊÇÏß¶ÎA1C1ºÍBDÉϵÄÖеãʱ£¬MNƽÐÐÓÚËÄÌõ²àÀ⣬ÓÉÏßÃæÆ½ÐеÄÅж¨¶¨Àí£¬¼´¿ÉÅжϢۣ»
¿¼ÂÇÃæ¶Ô½ÇÏߣ¬BC1£¬A1D£¬A1B£¬C1DËÄÖÖ£¬¼´¿ÉÅжϢܣ»
ÓÉÓÚMÔÚA1C1ÉÏ£¬A1C1ƽÐÐÓÚµ×ÃæABCD£¬ÔòMµ½µ×ÃæµÄ¾àÀëΪ¶¨Öµ1£¬ÓÉÀâ×¶µÄÌå»ý¹«Ê½¼´¿ÉÅжϢݣ®

½â´ð ½â£º¶ÔÓÚ¢Ù£¬M£¬N·Ö±ðÊÇÏß¶ÎA1C1ºÍBDÉϵ͝µã£¬µ±M£¬N·Ö±ðÊÇÏß¶ÎA1C1ºÍBDÉϵÄÖеãʱ£¬MN¡ÍBD£¬MN¡ÍA1C1£¬¼´MNΪ
ÒìÃæÖ±ÏßA1C1ºÍBDµÄ¹«´¹Ï߶Σ¬¼´ÓÐÏß¶ÎMNÓÐ×îСֵ£¬ÇÒ×îСֵΪ1£¬¹Ê¢Ù¶Ô£»
¶ÔÓÚ¢Ú£¬µ±MÓëC1ÖØºÏ£¬NÓëBÖØºÏ£¬Á¬½ÓBC1£¬B1C£¬
ÓÉBC1¡ÍB1C£¬CD¡ÍÆ½ÃæBCC1B1£¬ÓÉÈý´¹Ïß¶¨Àí¿ÉµÃ
B1D¡ÍBC1£¬¹Ê¢Ú´í£»
¶ÔÓÚ¢Û£¬´æÔÚÒ»¸öλÖ㬵±M£¬N·Ö±ðÊÇÏß¶ÎA1C1ºÍBDÉϵÄÖеãʱ£¬MNƽÐÐÓÚËÄÌõ²àÀ⣬ÓÉÏßÃæÆ½ÐеÄÅж¨¶¨Àí£¬
¿ÉµÃʹMNËùÔÚµÄÖ±ÏßÓëËĸö²àÃæ¶¼Æ½ÐУ¬¹Ê¢Û¶Ô£»
¶ÔÓڢܣ¬$|{MN}|=\sqrt{2}$µÄÇé¿öÖ»ÄÜÊÇÃæ¶Ô½ÇÏߣ¬BC1£¬A1D£¬A1B£¬C1DËÄÖÖ£¬¹Ê¢Ü¶Ô£»
¶ÔÓڢݣ¬M£¬N£¬B£¬CËĵãÄܹ¹³ÉÈýÀâ×¶£¬ÓÉÓÚMÔÚA1C1ÉÏ£¬
A1C1ƽÐÐÓÚµ×ÃæABCD£¬ÔòMµ½µ×ÃæµÄ¾àÀëΪ¶¨Öµ1£¬
ÔòÈýÀâ×¶µÄÌå»ýÖ»ÓëµãNµÄλÖÃÓйأ¬ÓëMÎ޹أ¬¹Ê¢Ý¶Ô£®
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü¢Ý£®

µãÆÀ ±¾Ì⿼²é¿Õ¼äÏßÏß¡¢ÏßÃæµÄλÖùØÏµºÍ¾àÀë¼°Ìå»ýµÄÇ󷨣¬¿¼²éÔËËãºÍÍÆÀíÄÜÁ¦£¬ÒÔ¼°×ª»¯Ë¼Ïë¡¢ÊýÐνáºÏµÄ˼Ïë·½·¨£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÔÚ¡÷ABCÖУ¬Èôa+c=20£¬C=2A£¬cosA=$\frac{3}{4}$£¬Ôò$\frac{c}{a}$=$\frac{3}{2}$£¬b=10»ò8£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖª¶¨ÒåÔÚ£¨0£¬+¡Þ£©Éϵĺ¯Êýf£¨x£©µÄµ¼º¯ÊýΪf'£¨x£©£¬Âú×ãx2f'£¨x£©+xf£¨x£©=lnx£¬f£¨e£©=$\frac{1}{e}$£¬Ôòf£¨x£©£¨¡¡¡¡£©
A£®Óм«´óÖµ£¬ÎÞ¼«Ð¡ÖµB£®Óм«Ð¡Öµ£¬ÎÞ¼«´óÖµ
C£®¼ÈÓм«´óÖµÓÖÓм«Ð¡ÖµD£®¼ÈÎÞ¼«´óÖµÒ²ÎÞ¼«Ð¡Öµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÔ²E£º£¨x+$\sqrt{3}$£©2+y2=16£¬µãF£¨$\sqrt{3}$£¬0£©£¬PÊÇÔ²EÉÏÈÎÒâÒ»µã£¬Ïß¶ÎPFµÄ´¹Ö±Æ½·ÖÏߺͰ뾶PEÏཻÓÚQ£®£¨¢ñ£©Ç󶯵ãQµÄ¹ì¼£¦£µÄ·½³Ì£»
£¨¢ò£©Ö±Ïßl¹ýµã£¨1£¬1£©£¬ÇÒÓë¹ì¼£¦£½»ÓÚA£¬BÁ½µã£¬µãMÂú×ã$\overrightarrow{AM}$=$\overrightarrow{MB}$£¬µãOÎª×ø±êÔ­µã£¬ÑÓ³¤Ïß¶ÎOMÓë¹ì¼£¦£½»ÓÚµãR£¬ËıßÐÎOARBÄÜ·ñΪƽÐÐËıßÐΣ¿ÈôÄÜ£¬Çó³ö´ËʱֱÏßlµÄ·½³Ì£¬Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªf£¨x£©=ax3-x2-x+b£¨a£¬b¡ÊR£¬a¡Ù0£©£¬g£¨x£©=$\frac{{3\sqrt{e}}}{4}{e^x}$£¨eÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©£¬f£¨x£©µÄͼÏóÔÚx=-$\frac{1}{2}$´¦µÄÇÐÏß·½³ÌΪy=$\frac{3}{4}x+\frac{9}{8}$£®
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©Ì½¾¿Ö±Ïßy=$\frac{3}{4}x+\frac{9}{8}$£®ÊÇ·ñ¿ÉÒÔÓ뺯Êýg£¨x£©µÄͼÏóÏàÇУ¿Èô¿ÉÒÔ£¬Ð´³öÇеãµÄ×ø±ê£¬·ñÔò£¬ËµÃ÷ÀíÓÉ£»
£¨3£©Ö¤Ã÷£ºµ±x¡Ê£¨-¡Þ£¬2]ʱ£¬f£¨x£©¡Üg£¨x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ä³ËÄÀâ×¶µÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸ÃËÄÀâ×¶µÄ²àÃæ»ýΪ£¨¡¡¡¡£©
A£®8B£®8+4$\sqrt{10}$C£®2$\sqrt{10}$+$\sqrt{13}$D£®4$\sqrt{10}$+2$\sqrt{13}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®¡°¶Ô³ÆÊý¡±ÊÇÖ¸´Ó×óµ½ÓÒ¶ÁÓë´ÓÓÒµ½×ó¶Á¶¼Ò»ÑùµÄÕýÕûÊý£¬Èç121£¬666£¬54345µÈ£¬ÔòÔÚËùÓеÄÁùλÊýÖУ¬²»Í¬µÄ¡°¶Ô³ÆÊý¡±µÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®100B£®900C£®999D£®1000

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©Âú×ãf£¨x+2£©=$\sqrt{3}$f£¨x£©£¬x¡Ê[0£¬2£©Ê±£¬f£¨x£©=$\left\{\begin{array}{l}{2{x}^{2}-2x£¬x¡Ê[0£¬1£©}\\{-2•£¨\frac{1}{3}£©^{|x-\frac{4}{3}|}£¬x¡Ê[1£¬2£©}\end{array}\right.$£¬x
¡Ê[-4£¬-2£©Ê±£¬f£¨x£©¡Ýt2-$\frac{7}{3}$tºã³ÉÁ¢£¬ÔòʵÊýtµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{1}{2}$£¬3£©B£®£¨-¡Þ£¬$\frac{1}{2}$]¡È£¨3£¬+¡Þ£©C£®[$\frac{1}{3}$£¬2]D£®£¨-¡Þ£¬$\frac{1}{3}$]¡È[2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®º¯Êý$f£¨x£©=3\sqrt{3}sin¦Øx£¨{¦Ø£¾0}£©$µÄ²¿·ÖͼÏóÈçͼËùʾ£¬µãA£¬BÊÇͼÏóµÄ×î¸ßµã£¬µãCÊÇͼÏóµÄ×îµÍµã£¬ÇÒ¡÷ABCÊÇÕýÈý½ÇÐΣ¬Ôòf£¨1£©+f£¨2£©+f£¨3£©µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{9}{2}$B£®$\frac{{9\sqrt{3}}}{2}$C£®$9\sqrt{3}+1$D£®$\frac{{9£¨{\sqrt{3}+1}£©}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸