精英家教网 > 高中数学 > 题目详情
12.已知圆心在x轴上的圆C与直线l:4x+3y-6=0切于点$M({\frac{3}{5},\frac{6}{5}})$.
(1)求圆C的标准方程;
(2)已知N(2,1),经过原点,且斜率为正数的直线m与圆C交于P(x1,y1),Q(x2,y2)两点,若|PN|2+|QN|2=24,求直线m的方程.

分析 (1)设圆C的标准方程为(x-a)2+y2=r2,根据切线的性质列方程组求出a,r即可得出圆C的标准方程;
(2)设直线m的方程y=kx,代入圆的方程化简,利用根与系数的关系得出P,Q的坐标关系,利用距离公式和|PN|2+|QN|2=24列方程解出k.

解答 解:(1)设圆C的标准方程为(x-a)2+y2=r2
则$\left\{\begin{array}{l}{\frac{|4a-6|}{5}=r}\\{\frac{\frac{6}{5}}{\frac{3}{5}-a}=\frac{3}{4}}\end{array}\right.$,解得a=-1,r=2,
∴圆C的标准方程为:(x+1)2+y2=4.
(2)设直线m的方程为y=kx,(k>0),
代入圆C的方程得(x+1)2+k2x2-4=0,即(1+k2)x2+2x-3=0,
∴x1+x2=$\frac{-2}{1+{k}^{2}}$,y1+y2=k(x1+x2)=$\frac{-2k}{1+{k}^{2}}$,
∴|PN|2=(x1-2)2+(y1-1)2=x12+y12-4x1-2y1+5=3-2x1-4x1-2y1+5=-6x1-2y1+8,
|QN|2=(x2-2)2+(y2-1)2=x22+y22-4x2-2y2+5=3-2x2-4x2-2y2+5=-6x2-2y2+8,
∴|PN|2+|QN|2=-6(x1+x2)-2(y1+y2)+16=$\frac{12}{1+{k}^{2}}$+$\frac{4k}{1+{k}^{2}}$+16=24,
解得k=1或k=-$\frac{1}{2}$(舍).
∴直线m的方程为:y=x.

点评 本题考查了圆的标准方程,直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设集合S={x|$\frac{x-3}{x-6}$≤0,x∈R},T={2,3,4,5,6},则S∩T={3,4,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)={(\frac{1}{2})^x}$与g(x)=-|x|在区间(-∞,0)上的单调性为(  )
A.都是增函数B.f(x)为减函数,g(x)为增函数
C.都是减函数D.f(x)为增函数,g(x)为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.观察下面一组等式:
S1=1,
S2=2+3+4=9,
S3=3+4+5+6+7=25,
S4=4+5+6+7+8+9+10=49,

根据上面等式猜测S2n-1=(4n-3)(an+b),则a2+b2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在(0,+∞)上的函数f(x)的导函数为f'(x),满足x2f'(x)+xf(x)=lnx,f(e)=$\frac{1}{e}$,则f(x)(  )
A.有极大值,无极小值B.有极小值,无极大值
C.既有极大值又有极小值D.既无极大值也无极小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,在学习积极性高的25名学生中有7名不太主动参加班级工作,而在积极参加班级工作的24名学生中有6名学生学习积极性一般.
(1)填写下面列联表;
积极参加班级工作不太主动参加班级工作合计
学习积极性高
学习积极性一般
合计
(2)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(3)试运用独立性检验的思想方法分析:能否在犯错误概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.
(观测值表如下)
P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆E:(x+$\sqrt{3}$)2+y2=16,点F($\sqrt{3}$,0),P是圆E上任意一点,线段PF的垂直平分线和半径PE相交于Q.(Ⅰ)求动点Q的轨迹Γ的方程;
(Ⅱ)直线l过点(1,1),且与轨迹Γ交于A,B两点,点M满足$\overrightarrow{AM}$=$\overrightarrow{MB}$,点O为坐标原点,延长线段OM与轨迹Γ交于点R,四边形OARB能否为平行四边形?若能,求出此时直线l的方程,若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某四棱锥的三视图如图所示,则该四棱锥的侧面积为(  )
A.8B.8+4$\sqrt{10}$C.2$\sqrt{10}$+$\sqrt{13}$D.4$\sqrt{10}$+2$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\frac{1+cosα}{sinα}$=2,则cosα-3sinα=(  )
A.-3B.3C.-$\frac{9}{5}$D.$\frac{9}{5}$

查看答案和解析>>

同步练习册答案