17£®Ä³°àÖ÷ÈζÔÈ«°à50ÃûѧÉúµÄѧϰ»ý¼«ÐԺͶԴý°à¼¶¹¤×÷µÄ̬¶È½øÐÐÁ˵÷²é£¬ÔÚѧϰ»ý¼«ÐԸߵÄ25ÃûѧÉúÖÐÓÐ7Ãû²»Ì«Ö÷¶¯²Î¼Ó°à¼¶¹¤×÷£¬¶øÔÚ»ý¼«²Î¼Ó°à¼¶¹¤×÷µÄ24ÃûѧÉúÖÐÓÐ6ÃûѧÉúѧϰ»ý¼«ÐÔÒ»°ã£®
£¨1£©ÌîдÏÂÃæÁÐÁª±í£»
»ý¼«²Î¼Ó°à¼¶¹¤×÷²»Ì«Ö÷¶¯²Î¼Ó°à¼¶¹¤×÷ºÏ¼Æ
ѧϰ»ý¼«ÐÔ¸ß
ѧϰ»ý¼«ÐÔÒ»°ã
ºÏ¼Æ
£¨2£©Èç¹ûËæ»ú³é²éÕâ¸ö°àµÄÒ»ÃûѧÉú£¬ÄÇô³éµ½»ý¼«²Î¼Ó°à¼¶¹¤×÷µÄѧÉúµÄ¸ÅÂÊÊǶàÉÙ£¿³éµ½²»Ì«Ö÷¶¯²Î¼Ó°à¼¶¹¤×÷ÇÒѧϰ»ý¼«ÐÔÒ»°ãµÄѧÉúµÄ¸ÅÂÊÊǶàÉÙ£¿
£¨3£©ÊÔÔËÓöÀÁ¢ÐÔ¼ìÑéµÄ˼Ïë·½·¨·ÖÎö£ºÄÜ·ñÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.001µÄǰÌáÏÂÈÏΪѧÉúµÄѧϰ»ý¼«ÐÔÓë¶Ô´ý°à¼¶¹¤×÷µÄ̬¶ÈÓйØÏµ£®
£¨¹Û²âÖµ±íÈçÏ£©
P£¨K2¡Ýk0£©0.0250.0100.0050.001
k05.0246.6357.87910.828

·ÖÎö £¨1£©¸ù¾ÝÌâÒ⣬ÌîдÁÐÁª±í¼´¿É£»
£¨2£©ÀûÓùŵä¸ÅÐ͵ĸÅÂʹ«Ê½¼ÆËã³éµ½»ý¼«²Î¼Ó°à¼¶¹¤×÷µÄѧÉúµÄ¸ÅÂʺͳ鵽²»Ì«Ö÷¶¯²Î¼Ó°à¼¶¹¤×÷ÇÒѧϰ»ý¼«ÐÔÒ»°ãµÄѧÉúµÄ¸ÅÂÊ£»
£¨3£©ÓÉK2ͳ¼ÆÁ¿µÄ¼ÆË㹫ʽ¼ÆËã¹Û²âÖµk£¬¶ÔÕÕÁÙ½çÖµµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬ÌîдÁÐÁª±íÈçÏ£»

»ý¼«²Î¼Ó°à¼¶¹¤×÷²»Ì«Ö÷¶¯²Î¼Ó°à¼¶¹¤×÷ºÏ¼Æ
ѧϰ»ý¼«ÐÔ¸ß18725
ѧϰ»ý¼«ÐÔÒ»°ã61925
ºÏ¼Æ242650
£¨2£©Ëæ»ú³é²éÕâ¸ö°àµÄÒ»ÃûѧÉú£¬ÓÐ50ÖÖ²»Í¬µÄ³é²é·½·¨£¬
ÓÉÓÚ»ý¼«²Î¼Ó°à¼¶¹¤×÷µÄѧÉúÓÐ18+6=24ÈË£¬ËùÒÔÓÐ24ÖÖ²»Í¬µÄ³é·¨£¬
Òò´ËÓɹŵä¸ÅÐ͸ÅÂʵļÆË㹫ʽ¿ÉµÃ³éµ½»ý¼«²Î¼Ó°à¼¶¹¤×÷µÄѧÉúµÄ¸ÅÂÊÊÇ
P1=$\frac{24}{50}$=$\frac{12}{25}$£¬
ÓÖÒòΪ²»Ì«Ö÷¶¯²Î¼Ó°à¼¶¹¤×÷ÇÒѧϰ»ý¼«ÐÔÒ»°ãµÄѧÉúÓÐ19ÈË£¬
ËùÒԳ鵽²»Ì«Ö÷¶¯²Î¼Ó°à¼¶¹¤×÷ÇÒѧϰ»ý¼«ÐÔÒ»°ãµÄѧÉúµÄ¸ÅÂÊÊÇ
P2=$\frac{19}{50}$£»
£¨3£©ÓÉK2ͳ¼ÆÁ¿µÄ¼ÆË㹫ʽµÃk=$\frac{50{¡Á£¨18¡Á19-6¡Á7£©}^{2}}{24¡Á26¡Á25¡Á25}$¡Ö11.538£¬
ÓÉÓÚ11.538£¾10.828£¬
ËùÒÔÄÜ·ñÔÚ·¸´íÎó¸ÅÂʲ»³¬¹ý0.001µÄǰÌáÏ£¬
ÈÏΪѧÉúµÄѧϰ»ý¼«ÐÔÓë¶Ô´ý°à¼¶¹¤×÷µÄ̬¶ÈÓйØÏµ£®

µãÆÀ ±¾Ì⿼²éÁ˶ÀÁ¢ÐÔ¼ìÑéÓë¹Åµä¸ÅÐ͵ĸÅÂʼÆËãÎÊÌ⣬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¡°a£¾1¡°ÊÇ¡°$\frac{1}{a}$£¼1¡°µÄ£¨¡¡¡¡£©
A£®³ä·Ö·Ç±ØÒªÌõ¼þB£®±ØÒª·Ç³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®·Ç³ä·Ö·Ç±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªP£¨2£¬0£©£¬QÊÇÔ²$\left\{{\begin{array}{l}{x=cos¦È}\\{y=sin¦È}\end{array}}\right.$ÉÏÒ»¶¯µã£¬ÇóPQµÄÖеã¹ì¼£·½³Ì£¬²¢ËµÃ÷¹ì¼£ÊÇʲôÑùµÄÇúÏߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³Ð£ÔÚÁ½¸ö°à½øÐÐѧϰ·½Ê½¶Ô±ÈÊÔÑ飬°ëÄêºó½øÐÐÁËÒ»´Î¼ì²â£¬ÊÔÑé°àÓë¶ÔÕÕ°à³É¼¨Í³¼ÆÈç2¡Á2ÁÐÁª±íËùʾ£¨µ¥Î»£ºÈË£©£®
80¼°80·ÖÒÔÉÏ80·ÖÒÔϺϼÆ
ÊÔÑé°à301040
¶ÔÕÕ°à18m40
ºÏ¼Æ4832n
£¨1£©Çóm£¬n
£¨2£©ÄãÓжà´ó°ÑÎÕÈÏΪ¡°³É¼¨Óëѧϰ·½Ê½ÓйØÏµ¡±£¿
²Î¿¼¹«Ê½¼°Êý¾Ý£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+dΪÑù±¾ÈÝÁ¿£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÔ²ÐÄÔÚxÖáÉϵÄÔ²CÓëÖ±Ïßl£º4x+3y-6=0ÇÐÓÚµã$M£¨{\frac{3}{5}£¬\frac{6}{5}}£©$£®
£¨1£©ÇóÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖªN£¨2£¬1£©£¬¾­¹ýÔ­µã£¬ÇÒбÂÊΪÕýÊýµÄÖ±ÏßmÓëÔ²C½»ÓÚP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©Á½µã£¬Èô|PN|2+|QN|2=24£¬ÇóÖ±ÏßmµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªº¯Êýy=2sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£©£¬Èô´æÔÚx0¡ÊR£¬Ê¹µÃf£¨x0+2£©-f£¨x0£©=4£¬Ôò¦ØµÄ×îСֵΪ$\frac{¦Ð}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=ex£¨2x-1£©-a£¨x-1£©ÓÐÁ½¸ö²»Í¬µÄÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1£©B£®£¨0£¬1£©C£®£¨4e${\;}^{\frac{3}{2}}$£¬+¡Þ£©D£®£¨0£¬1£©¡È£¨4e${\;}^{\frac{3}{2}}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®º¯Êýf£¨x£©=lnx-4x+1µÄµÝÔöÇø¼äΪ£¨¡¡¡¡£©
A£®£¨0£¬$\frac{1}{4}$£©B£®£¨0£¬4£©C£®£¨-¡Þ£¬$\frac{1}{4}$£©D£®£¨$\frac{1}{4}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬l£º$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©
£¨1£©ÇóÇúÏßCµÄÆÕͨ·½³Ì£¬lµÄÖ±½Ç×ø±ê·½³Ì
£¨2£©ÉèlÓëC½»ÓÚM£¬NÁ½µã£¬µãP£¨-2£¬0£©£¬Èô|PM|£¬|MN|£¬|PN|³ÉµÈ±ÈÊýÁУ¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸