精英家教网 > 高中数学 > 题目详情
8.已知P(2,0),Q是圆$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}\right.$上一动点,求PQ的中点轨迹方程,并说明轨迹是什么样的曲线.

分析 根据题意,设PQ的中点为M,其坐标为(x,y),由P、Q的坐标计算可得$\left\{\begin{array}{l}{x=\frac{2+cosθ}{2}}\\{y=\frac{sinθ}{2}}\end{array}\right.$,将其变形为普通方程可得(x-1)2+y2=$\frac{1}{4}$,由圆的标准方程分析可得答案.

解答 解:根据题意,设PQ的中点为M,其坐标为(x,y),
又由P(2,0),Q是圆$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}\right.$上一动点,
则有$\left\{\begin{array}{l}{x=\frac{2+cosθ}{2}}\\{y=\frac{sinθ}{2}}\end{array}\right.$,
变形可得(x-1)2+y2=$\frac{1}{4}$,
则其轨迹为以(1,0)为圆心,半径为$\frac{1}{2}$的圆.

点评 本题考查参数方程的应用,关键是求出PQ中点的参数方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某厂每日生产一种大型产品2件,每件产品的投入成本为1000元.产品质量为一等品的概率为0.5,二等品的概率为0.4,每件一等品的出厂价为5000元,每件二等品的出厂价为4000元,若产品质量不能达到一等品或二等品,除成本不能收回外,每生产1件产品还会带来1000元的损失.
(Ⅰ)求在连续生产的3天中,恰有两天生产的2件产品都为一等品的概率;
(Ⅱ)已知该厂某日生产的这种大型产品2件中有1件为一等品,求另1件也为一等品的概率;
(Ⅲ)求该厂每日生产这种产品所获利润ξ(元)的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}的前n项a1,a2,…,an(n∈N*)组成集合An={a1,a2,…,an},从集合An中任取k(k=1,2,3,…,n)个数,其所有可能的k个数的乘积的和为Tk(若只取一个数,规定乘积为此数本身),例如:对于数列{2n-1},当n=1时,A1={1},T1=1;n=2时,A2={1,3},T1=1+3,T2=1•3;
(1)若集合An={1,3,5,…,2n-1},求当n=3时,T1,T2,T3的值;
(2)若集合An={1,3,7,…,2n-1},证明:n=k时集合Ak的Tm与n=k+1时集合Ak+1的Tm(为了以示区别,用Tm′表示)有关系式Tm′=(2k+1-1)Tm-1+Tm,其中m,k∈N*,2≤m≤k;
(3)对于(2)中集合An.定义Sn=T1+T2+…+Tn,求Sn(用n表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\frac{1}{3}$ax3+ax2+x+1有极值的充要条件是a<0或a>1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)={(\frac{1}{2})^x}$与g(x)=-|x|在区间(-∞,0)上的单调性为(  )
A.都是增函数B.f(x)为减函数,g(x)为增函数
C.都是减函数D.f(x)为增函数,g(x)为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图网络纸上小正方形的边长为1,粗实(虚)线画出的是某几何体的三视图,则该几何图的体积为(  )
A.12B.18C.20D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.观察下面一组等式:
S1=1,
S2=2+3+4=9,
S3=3+4+5+6+7=25,
S4=4+5+6+7+8+9+10=49,

根据上面等式猜测S2n-1=(4n-3)(an+b),则a2+b2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,在学习积极性高的25名学生中有7名不太主动参加班级工作,而在积极参加班级工作的24名学生中有6名学生学习积极性一般.
(1)填写下面列联表;
积极参加班级工作不太主动参加班级工作合计
学习积极性高
学习积极性一般
合计
(2)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(3)试运用独立性检验的思想方法分析:能否在犯错误概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.
(观测值表如下)
P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.将7名应届师范大学毕业生分配到3所中学任教
(1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?
(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?

查看答案和解析>>

同步练习册答案