精英家教网 > 高中数学 > 题目详情
7.在直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),l:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)
(1)求曲线C的普通方程,l的直角坐标方程
(2)设l与C交于M,N两点,点P(-2,0),若|PM|,|MN|,|PN|成等比数列,求实数a的值.

分析 (1)曲线C转化为ρ2sin2θ=2aρcosθ,(a>0),由此能求出曲线C的普通方程;l的参数方程消去参数能求出l的直角坐标方程.
(2)将l的参数方程代入曲线C的普通方程,得:${t}^{2}-2\sqrt{2}at+8a=0$,由根的差别式得a>4,由韦达定理得${t}_{1}+{t}_{2}=2\sqrt{2}a$,t1t2=8a,由此利用|PM|,|MN|,|PN|成等比数列,能求出a.

解答 解:(1)∵曲线C:ρsin2θ=2acosθ(a>0),∴ρ2sin2θ=2aρcosθ,(a>0),
∴曲线C的普通方程为y2=2ax,(a>0);
∵l的参数方程为:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),
∴消去参数得l的直角坐标方程为:x-y+2=0.
(2)将l的参数方程:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)代入y2=2ax,(a>0),
得:${t}^{2}-2\sqrt{2}at+8a=0$,
△=8a2-32a>0,解得a>4,
${t}_{1}+{t}_{2}=2\sqrt{2}a$,t1t2=8a,
∵|PM|,|MN|,|PN|成等比数列,
∴|t1-t2|2=|t1t2|,∴(2$\sqrt{2}a$)2-4×8a=8a,
解得a=5.

点评 本题考查曲线的普通方程与直线的直角坐标方程的求法,考查实数值的求法,涉及到直角坐标方程、极坐标方程、参数方程的互化、根的判别式、韦达定理、等比数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,在学习积极性高的25名学生中有7名不太主动参加班级工作,而在积极参加班级工作的24名学生中有6名学生学习积极性一般.
(1)填写下面列联表;
积极参加班级工作不太主动参加班级工作合计
学习积极性高
学习积极性一般
合计
(2)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(3)试运用独立性检验的思想方法分析:能否在犯错误概率不超过0.001的前提下认为学生的学习积极性与对待班级工作的态度有关系.
(观测值表如下)
P(K2≥k00.0250.0100.0050.001
k05.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.将7名应届师范大学毕业生分配到3所中学任教
(1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?
(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数列{an}中,若存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),则称ak为{an}的一个H值.现有如下数列:①an=1-2n;②an=sinn;③an=$\frac{n-2}{{e}^{n-3}}$④an=lnn-n,则存在H值的数列有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\frac{1+cosα}{sinα}$=2,则cosα-3sinα=(  )
A.-3B.3C.-$\frac{9}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,在三棱锥A-BCD中,侧面ABD,ACD是全等的直角三角形,AD是公共的斜边且AD=$\sqrt{3}$,BD=CD=1,另一侧面ABC是正三角形.
(1)求证:AD⊥BC;
(2)若在线段AC上存在一点E,使ED与平面BCD成30°角,试求二面角A-BD-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线l:kx-y-3=0与圆O:x2+y2=4交于A、B两点且$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,则k=(  )
A.2B.±$\sqrt{2}$C.±2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设△ABC的内角A,B,C的对边分别为a,b,c,若c=2$\sqrt{3}$,sinB=2sinA.
(1)若C=$\frac{π}{3}$,求a,b的值;
(2)若cosC=$\frac{1}{4}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设不等式组$\left\{\begin{array}{l}{y≤x+1}\\{2x+y≤7}\\{x+2y≥5}\end{array}\right.$,表示的平面区域为D,若D中存在点在曲线y=ax2上,则实数a的取值范围是(  )
A.[1,2]B.[$\frac{1}{3}$,3]C.[$\frac{1}{6}$,2]D.[$\frac{1}{9}$,2]

查看答案和解析>>

同步练习册答案