精英家教网 > 高中数学 > 题目详情
19.已知直线l:kx-y-3=0与圆O:x2+y2=4交于A、B两点且$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,则k=(  )
A.2B.±$\sqrt{2}$C.±2D.$\sqrt{2}$

分析 求出圆的半径,利用直线与圆的位置关系,推出圆心到直线的距离,列出方程求解即可.

解答 解:圆O:x2+y2=4圆心(0,0),半径为2,
直线l:kx-y-3=0与圆O:x2+y2=4交于A、B两点且$\overrightarrow{OA}$•$\overrightarrow{OB}$=2,
可得2×2×cosθ=2,解得cosθ=$\frac{1}{2}$,θ=$\frac{π}{3}$,
圆心到直线的距离为:2cos$\frac{π}{6}$=$\sqrt{3}$,
可得:$\frac{|-3|}{\sqrt{1+{k}^{2}}}=\sqrt{3}$,解得k=$±\sqrt{2}$.
故选:B.

点评 本题考查直线与圆的位置关系的应用,向量数量积的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=ex(2x-1)-a(x-1)有两个不同的零点,则实数a的取值范围是(  )
A.(-∞,1)B.(0,1)C.(4e${\;}^{\frac{3}{2}}$,+∞)D.(0,1)∪(4e${\;}^{\frac{3}{2}}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点M(x,y)是圆C:x2+y2-2x=0的内部任意一点,则点M满足y≥x的概率是(  )
A.$\frac{1}{4}$B.$\frac{π-2}{4}$C.$\frac{1}{2π}$D.$\frac{π-2}{4π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),l:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)
(1)求曲线C的普通方程,l的直角坐标方程
(2)设l与C交于M,N两点,点P(-2,0),若|PM|,|MN|,|PN|成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为(  )
A.20B.24C.30D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等差数列{an}中,a1=2017,其前n项和为Sn,若$\frac{{S}_{2013}}{2013}$-$\frac{{S}_{2011}}{2011}$=2,则S2017=2017.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC中,内角A,B,C的对边分别为a,b,c,且tanA,tanB是关于x的方程x2+(1+p)x+p+2=0的两个根,c=4.
(1)求角C的大小;
(2)求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.连续两次抛掷一枚骰子,记录向上的点数,则向上的点数之差的绝对值为3的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{1}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.华中师大附中中科教处为了研究高一学生对物理和数学的学习是否与性别有关,从高一年级抽取60名同学(男同学30名,女同学30名),给所有同学物理题和数学题各一题,让每位同学自由选择一道题进行解答.选题情况如表:(单位:人)
物理题数学题总计
男同学161430
女同学82220
总计243660
(1)在犯错误的概率不超过1%的条件下,能否判断高一学生对物理和数学的学习与性别有关?
(2)经过多次测试后发现,甲每次解答一道物理题所用的时间为5-8分钟,乙每次解答一道物理题所用的时间为6-8分钟,现甲、乙解同一道物理题,求甲比乙先解答完的概率;
(3)现从选择做物理题的8名女生中任意选取两人,对他们的解答情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列和数学期望.
附表及公式:
P(K2?k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案