精英家教网 > 高中数学 > 题目详情
12.如图所示,在三棱锥A-BCD中,侧面ABD,ACD是全等的直角三角形,AD是公共的斜边且AD=$\sqrt{3}$,BD=CD=1,另一侧面ABC是正三角形.
(1)求证:AD⊥BC;
(2)若在线段AC上存在一点E,使ED与平面BCD成30°角,试求二面角A-BD-E的大小.

分析 (1)取BC的中点O,连结AO,DO,由三线合一可得BC⊥OD,BC⊥AO,故而BC⊥平面AOD,于是BC⊥AD;
(2)以O为原点建立空间坐标系,根据ED与平面BCD成30°角得出E点坐标,求出平面ABD与平面BDE的法向量,计算法向量的夹角即可得出二面角的大小.

解答 (1)证明:取BC的中点O,连结AO,DO,
∵BD=CD,AB=AC,
∴AO⊥BC,OD⊥BC,又OA∩OD=O,
∴BC⊥平面AOD,
又AD?平面AOD,
∴AD⊥BC.
(2)解:在平面AOD中,过O作OD的垂线Oz,则OC,OD,Oz两两垂直,
以O为原点,以OC,OD,Oz为坐标轴建立空间直角坐标系,如图所示:
∵BD=CD=1,AD=$\sqrt{3}$,AC⊥CD,AB⊥BD,△ABC是等边三角形,
∴BC=AB=AC=$\sqrt{2}$,∴OD=$\frac{1}{2}$BC=$\frac{\sqrt{2}}{2}$,OA=$\frac{\sqrt{6}}{2}$,
∴cos∠AOD=$\frac{O{D}^{2}+O{A}^{2}-A{D}^{2}}{2OD•OA}$=-$\frac{\sqrt{3}}{3}$,
∴A(0,-$\frac{\sqrt{2}}{2}$,1),C($\frac{\sqrt{2}}{2}$,0,0),D(0,$\frac{\sqrt{2}}{2}$,0),
∴$\overrightarrow{CA}$=(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$,1),$\overrightarrow{DC}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$,0),设$\overrightarrow{CE}=λ\overrightarrow{CA}$=(-$\frac{\sqrt{2}}{2}$λ,-$\frac{\sqrt{2}}{2}$λ,λ),
则$\overrightarrow{DE}$=$\overrightarrow{DC}+\overrightarrow{CE}$=($\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$λ,-$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$λ,λ),
∵平面BCD的一个法向量为$\overrightarrow n=(0,0,1)$,
∵ED与平面BCD成30°角,
∴cos<$\overrightarrow{n}$,$\overrightarrow{DE}$>=$\frac{\overrightarrow{DE}•\overrightarrow{n}}{|\overrightarrow{DE}||\overrightarrow{n}|}$=$\frac{λ}{\sqrt{\frac{1}{2}(1-λ)^{2}+\frac{1}{2}(1+λ)^{2}+{λ}^{2}}}$=$\frac{1}{2}$,解得λ=$\frac{\sqrt{2}}{2}$,
∴$\overrightarrow{DE}$=($\frac{\sqrt{2}-1}{2}$,-$\frac{\sqrt{2}+1}{2}$,$\frac{\sqrt{2}}{2}$),又B(-$\frac{\sqrt{2}}{2}$,0,0),
∴$\overrightarrow{BA}$=($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$,1),$\overrightarrow{BD}$=($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0),
设平面BDE的法向量$\overrightarrow{{n}_{1}}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{BD}=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{DE}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y=0}\\{\frac{\sqrt{2}-1}{2}x-\frac{\sqrt{2}+1}{2}y+\frac{\sqrt{2}}{2}z=0}\end{array}\right.$,
令y=-1则$\overrightarrow{{n}_{1}}$=(1,-1,-2),同理可得平面ABD的法向量为$\overrightarrow{{n}_{2}}$=(1,-1,-$\sqrt{2}$),
∴$cos<\overrightarrow{n_1},\overrightarrow{n_2}>$=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$=$\frac{2+2\sqrt{2}}{\sqrt{6}•2}$=$\frac{\sqrt{6}+2\sqrt{3}}{6}$,设平面ABD与平面ACD成角为θ,
则$cosθ=cos<\overrightarrow{n_1},\overrightarrow{n_2}>=\frac{{\sqrt{6}+2\sqrt{3}}}{6}$,
∴$θ=arccos\frac{{\sqrt{6}+2\sqrt{3}}}{6}$.

点评 本题考查了线面垂直的判定与性质,空间向量与空间角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数y=2sin(ωx+φ)(ω>0),若存在x0∈R,使得f(x0+2)-f(x0)=4,则ω的最小值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.根据三视图求空间几何体的体积(  )
A.2B.$\frac{7}{3}$C.$\frac{8}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ea(x-1)-ax2,a为不等于零的常数.
(Ⅰ)当a<0时,求函数f′(x)的零点个数;
(Ⅱ)若对任意x1,x2,当x1<x2时,f(x2)-f(x1)>a(${e}^{a({x}_{1}-1)}$-2x1)(x2-x1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,以O为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C:ρsin2θ=2acosθ(a>0),l:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)
(1)求曲线C的普通方程,l的直角坐标方程
(2)设l与C交于M,N两点,点P(-2,0),若|PM|,|MN|,|PN|成等比数列,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设复数z=$\frac{1+2i}{(1-i)^{2}}$,则z的虚部是(  )
A.$\frac{1}{2}$iB.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等差数列{an}中,a1=2017,其前n项和为Sn,若$\frac{{S}_{2013}}{2013}$-$\frac{{S}_{2011}}{2011}$=2,则S2017=2017.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若幂函数y=(m2-4m+1)xm2-2m-3为(0,+∞)上的增函数,则实数m的值等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.为研究人的身高与体重的关系,某学习小组通过调查并绘制出如图所示的散点图,其中△代表男生,●代表女生,根据图中信息,写出一个统计结论人的身高与体重是有正相关关系.

查看答案和解析>>

同步练习册答案