分析 ,运用余弦定理,表示出AC,进而用三角函数表示出S△BCD.
解答 解:在△ABC中,设∠ACB=α,∠ACB=β,由余弦定理得:
AC2=12+22-2×1×2cosα=5-4cosα,
∵△ACD为正三角形,
∴CD2=5-4cosα,
由正弦定理得:$\frac{1}{sinβ}$=$\frac{AC}{sinα}$,
∴AC•sinβ=sinα,
∴CD•sinβ=sinα,
∵(CD•cosβ)2=CD2(1-sin2β)=CD2-sin2α=5-4cosα-sin2α=(2-cosα)2,
∵β<∠BAC,∴β为锐角,CD•cosβ=2-cosα,
∴S△BCD=$\frac{1}{2}$•2•CD•sin($\frac{π}{3}$+β)=CD•sin($\frac{π}{3}$+β)=$\frac{\sqrt{3}}{2}$CD•cosβ+$\frac{1}{2}$CD•sinβ=$\frac{\sqrt{3}}{2}$•(2-cosα)+$\frac{1}{2}$sinα=$\sqrt{3}$+sin(α-$\frac{π}{3}$),
当α=$\frac{5π}{6}$时,(S△BCD)max=$\sqrt{3}$+1.
点评 本题考查三角形的面积的最值的求法,注意运用余弦定理和面积公式,同时考查基本不等式的运用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com