6£®Ä³²ÍÒûÁ¬ËøÆóÒµÔÚijµØ¼¶Êж«³ÇÇøºÍÎ÷³ÇÇø¸÷ÓÐÒ»¸ö¼ÓÃ˵꣬Á½µêÔÚ2015ÄêµÄ1¡«7Ô·ݵÄÀûÈóy£¨µ¥Î»£ºÍòÔª£©È羥ҶͼËùʾ£º
£¨1£©¼ÆËã¼×µêºÍÒÒµêÔÚ1¡«7ÔÂ·ÝµÄÆ½¾ùÀûÈ󣬱ȽÏÁ½µêÀûÈóµÄ·ÖÉ¢³Ì¶È£¨²»ÓüÆË㣩£»
£¨2£©´ÓÕâÁ½µã1¡«7Ô·ݵÄ14¸öÀûÈóÖÐѡȡ2¸ö£¬ÉèÕâ2¸öÀûÈóÖС°´óÓÚ45ÍòÔª¡±µÄ¸öÊýΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
£¨3£©¼ÙÉè¼×µê1¡«7Ô·ݵÄÀûÈóÇ¡ºÃÊǵÝÔöµÄ£¬Åжϼ׵êµÄÀûÈóyºÍÔ·ÝtÊÇ·ñ¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµ£¬Èô¾ßÓУ¬Ô¤²â¼×µê8Ô·ݵÄÀûÈó£¬ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®£¨Ð¡Êýµãºó±£ÁôÁ½Î»Ð¡Êý£©
¸½£º»Ø¹éÖ±ÏßµÄбÂʵÄ×îС³Ë·¨¹À¼Æ¹«Ê½£º
b=$\frac{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}$£®

·ÖÎö £¨1£©¼ÆËã¼×¡¢ÒÒÁ½µêÀûÈóµÄƽ¾ùÊý£¬²¢·ÖÎö¾¥Ò¶Í¼ÖеÄÊý¾ÝÀëÉ¢Çé¿ö£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©·ÖÎö±íÖÐÊý¾Ý£¬Çó³öXµÄ¿ÉÄÜȡֵÒÔ¼°¶ÔÓ¦µÄ¸ÅÂÊ£¬ÁгöXµÄ·Ö²¼ÁУ¬¼ÆËãÊýѧÆÚÍûÖµ£»
£¨3£©Åжϼ׵êµÄÀûÈóyºÍÔ·Ýt¾ßÓÐÏà¹Ø¹ØÏµ£¬ÀûÓù«Ê½Çó³öÏßÐԻع鷽³Ì£¬²¢Ô¤²âÀûÈó´óС£®

½â´ð ½â£º£¨1£©¾­¼ÆË㣬¼×µêÀûÈóµÄƽ¾ùˮƽΪ43£¬ÒÒµêÀûÈóµÄƽ¾ùˮƽҲΪ43£¬
µ«´Ó¾¥Ò¶Í¼¿´ÒÒµêµÄÊý¾Ý±È½Ï¼¯ÖУ¬¼×µêµÄÊý¾Ý±È½Ï·ÖÉ¢£»
£¨2£©ÓɱíÖª£¬14¸öÊý¾ÝÖУ¬´óÓÚ45µÄÓÐ5¸ö£¬XµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£»
P£¨X=0£©=$\frac{{C}_{9}^{2}}{{C}_{14}^{2}}$=$\frac{36}{91}$£¬P£¨X=1£©=$\frac{{C}_{5}^{1}{•C}_{9}^{1}}{{C}_{14}^{2}}$=$\frac{45}{91}$£¬
P£¨X=2£©=$\frac{{C}_{5}^{2}}{{C}_{14}^{2}}$=$\frac{10}{91}$£»
ËùÒÔXµÄ·Ö²¼ÁÐΪ£¬XµÄ·Ö²¼ÁÐΪ£º

X012
P$\frac{36}{91}$$\frac{45}{91}$$\frac{10}{91}$
ÊýѧÆÚÍûΪEX=0¡Á$\frac{36}{91}$+1¡Á$\frac{45}{91}$+2¡Á$\frac{10}{91}$=$\frac{5}{7}$£®
£¨3£©¸ù¾Ý¼×µêµÄÀûÈóyºÍÔ·ÝtµÄÉ¢µãͼµÃ³ö¼×µêµÄÀûÈóyºÍÔ·Ýt¾ßÓÐÏà¹Ø¹ØÏµ£¬
¼ÆËã$\overline{x}$=4£¬$\overline{y}$=43£¬$\underset{\stackrel{7}{¡Æ}}{i=1}$tiyi=1373£¬$\underset{\stackrel{7}{¡Æ}}{i=1}$${{t}_{i}}^{2}$=140£»
ÔÙ¸ù¾Ý»Ø¹éÖ±ÏßµÄбÂʵÄ×îС¶þ³Ë·¨¹À¼Æ¹«Ê½£º
b=$\frac{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{t}_{i}-\overline{t}£©^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}$£¬
¼ÆËã$\stackrel{¡Ä}{b}$=6.04£¬$\stackrel{¡Ä}{a}$=18.84£¬
ËùÒÔÏßÐԻع鷽³ÌΪ$\stackrel{¡Ä}{y}$=6.04t+18.84£¬
µ±t=8ʱ£¬Ô¤²âÀûÈóΪ67.16ÍòÔª£®

µãÆÀ ±¾Ì⿼²éÁ˾¥Ò¶Í¼ÓëÀëÉ¢ÐÍËæ»ú±äÁ¿·Ö²¼ÁС¢ÊýѧÆÚÍûµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÏßÐԻع鷽³ÌµÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª¸´ÊýzÂú×ãz=$\frac{1}{2}$-i£¬$\overrightarrow{z}$ΪzµÄ¹²éÊý£¬Ôò£¨z-$\overrightarrow{z}$£©2016µÈÓÚ£¨¡¡¡¡£©
A£®22016B£®-22016C£®22016iD£®-22016i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÈçͼËùʾÔÚÆ½ÃæËıßÐÎABCDÖУ¬AB=1£¬BC=2£¬¡÷ACDΪÕýÈý½ÇÐΣ¬Ôò¡÷BCDµÄÃæ»ýµÄ×î´óֵΪ$\sqrt{3}$+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2cos¦Á}\\{y=\sqrt{3}sin¦Á}\end{array}\right.$ £¨¦ÁΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«ÖᣩÖУ¬Ö±ÏßlµÄ·½³ÌΪ¦Ñ£¨cos¦È-sin¦È£©+1=0
£¨1£©Ð´³öÇúÏßCµÄºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÈôlÓëxÖáµÄ½»µãΪP£¬ÓëÇúÏßCµÄ½»µãΪA£¬B£¬Çó|PA|•|PB|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÉèµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÈôS8=32£¬Ôòa2+2a5+a6=16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®É躯Êý$f£¨x£©=\frac{2}{3}+\frac{1}{x}£¨{x£¾0}£©$£¬ÊýÁÐ{an}Âú×ã${a_1}=1£¬{a_n}=f£¨{\frac{1}{{{a_{n-1}}}}}£©$£¬n¡ÊN*£¬ÇÒn¡Ý2£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¶Ôn¡ÊN*£¬Éè${S_n}=\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+\frac{1}{{{a_3}{a_4}}}+¡­+\frac{1}{{{a_n}{a_{n+1}}}}$£¬Èô${S_n}¡Ý\frac{3t}{4n}$ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èçͼ£¬¡ÑOÊÇÒÔOΪԲÐÄ¡¢1Ϊ°ë¾¶µÄÔ²£¬ÉèµãA£¬B£¬CΪ¡ÑOÉϵÄÈÎÒâÈýµã£¬Ôò$\overrightarrow{AC}$•$\overrightarrow{BC}$µÄȡֵ·¶Î§Îª[-4£¬4]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{x}^{2}+3}{|x-1|}$£¬g£¨x£©=1+kcosx£¬Ôòf£¨x£©µÄÖµÓòÊÇ[2£¬+¡Þ£©£¬Èô¶ÔÈÎÒâµÄx1£¬x2¡ÊR£¬¾ùÓÐf£¨x1£©¡Ýg£¨x2£©£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ[-1£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªz¡ÊC£¬Ôò|zÒ»4|+|z+3i|µÄ×îСֵÊÇ5£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸