精英家教网 > 高中数学 > 题目详情
1.设等差数列{an}的前n项和为Sn,若S8=32,则a2+2a5+a6=16.

分析 S8=32,可得$\frac{8({a}_{1}+{a}_{8})}{2}$=32,可得a4+a5=a1+a8.利用a2+2a5+a6=2(a4+a5)即可得出.

解答 解:∵S8=32,
∴$\frac{8({a}_{1}+{a}_{8})}{2}$=32,可得a4+a5=a1+a8=8.
则a2+2a5+a6=2(a4+a5)=2×8=16,
故答案为:16.

点评 本题考查了等差数列的通项公式性质及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的前n项和Sn,且a1=2,S5=30.数列{bn}的前n项和为Tn=2n-1.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=lnbn+(-1)nlnSn,求数列{cn}的前2n项和A2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=|x+1|+|x-2|
(Ⅰ)求f(x)的最小值,并求出f(x)取最小值时x的取值范围;
(Ⅱ)若不等式f(x)≤a(x+1)的解集为空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数$f(x)=\left\{\begin{array}{l}{log_a}x,x>2\\-{x^2}+2x-2,x≤2\end{array}\right.$(a>0,a≠1)的值域是(-∞,-1],则实数a的取值范围是[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点C是线段AB上一点,$\overrightarrow{AC}$=2$\overrightarrow{CB}$,$\frac{\overrightarrow{MA}•\overrightarrow{MC}}{|\overrightarrow{MA}|}$=$\frac{\overrightarrow{MB}•\overrightarrow{MC}}{|\overrightarrow{MB}|}$,则$\frac{\overrightarrow{MA}•\overrightarrow{MB}}{|AB{|}^{2}}$的最小值为-$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某餐饮连锁企业在某地级市东城区和西城区各有一个加盟店,两店在2015年的1~7月份的利润y(单位:万元)如茎叶图所示:
(1)计算甲店和乙店在1~7月份的平均利润,比较两店利润的分散程度(不用计算);
(2)从这两点1~7月份的14个利润中选取2个,设这2个利润中“大于45万元”的个数为X,求X的分布列及数学期望.
(3)假设甲店1~7月份的利润恰好是递增的,判断甲店的利润y和月份t是否具有线性相关关系,若具有,预测甲店8月份的利润,若没有,请说明理由.(小数点后保留两位小数)
附:回归直线的斜率的最小乘法估计公式:
b=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是某样本数据的茎叶图,则该样本的中位数、众数、极差分别是(  )
A.32 34 32B.33 45 35C.34 45 32D.33 36 35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=ex-ae-x+(a+1)x+a-1,若对于任意的x∈(0,+∞),都有f(x)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若lg(x-1)+lg(3-x)<lg(a+x)成立,则实数a的取值范围是(-1,$\frac{3}{4}$).

查看答案和解析>>

同步练习册答案