精英家教网 > 高中数学 > 题目详情
5.若sinα=-$\frac{5}{13}$,且α为第四象限角,则tanα的值等于(  )
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.-$\frac{5}{12}$D.$\frac{5}{12}$

分析 根据同角三角函数的基本关系以及三角函数在各个象限中的符号,求得cosα的值,可得tanα的值.

解答 解:∵sinα=-$\frac{5}{13}$,且α为第四象限角,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{12}{13}$,则tanα=$\frac{sinα}{cosα}$=-$\frac{5}{12}$,
故选:C.

点评 本题主要考查同角三角函数的基本关系的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.将长、宽分别为4πcm、2cm的矩形做为圆柱的侧面卷成一个圆柱(以较长边为底面周长),则此圆柱的全面积为16πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=$\frac{{e}^{x}}{x}$在(0,2)上的最小值是(  )
A.$\frac{e}{2}$B.$\frac{\sqrt{e}}{2e}$C.$\frac{2e}{3}$D.e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,已知a,b,c分别是角A,B,C的对边,且满足$\frac{2b+c}{a}$=-$\frac{cosC}{cosA}$.
(Ⅰ)求A的大小;
(Ⅱ)若△ABC的面积为2$\sqrt{3}$,其外接圆半径R=$\frac{2\sqrt{21}}{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.$\frac{|1+i|}{1+i}$+$\frac{1+i}{|1+i|}$=(  )
A.$\sqrt{2}$B.2C.$\sqrt{2}$+$\sqrt{2}$iD.$\sqrt{2}$-$\sqrt{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={-2,0,2,4},N={x|x2<9},则M∩N=(  )
A.{0,2}B.{-2,0,2}C.{0,2,4}D.{-2,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若变量x、y满足约束条件$\left\{{\begin{array}{l}{x+y-3≤0}\\{x-y+1≥0}\\{y≥1}\end{array}}$,则z=$\frac{x+2y}{x}$的最小值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=-x2+1B.y=lg|x|C.$y=\frac{1}{x}$D.y=e-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知:命题p:″a=1″是当x>0时,x+$\frac{a}{x}$>2的充分必要条件,命题:q:?x0∈R,x02+x0-2>0,则下列命题正确的是(  )
A.命题p∧q是真命题B.命题¬p∧q是真命题
C.命题p∧(¬q)是真命题D.命题(¬p)∧(¬q)是真命题

查看答案和解析>>

同步练习册答案