精英家教网 > 高中数学 > 题目详情
19.已知双曲线C的中心在原点,焦点在y轴上,若双曲线C的一条渐近线与直线$\sqrt{3}$x+y-4=0平行,则双曲线C的离心率为$\frac{2\sqrt{3}}{3}$.

分析 根据题意,设双曲线C的方程为$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1,由此可得其渐近线方程,又由双曲线C的一条渐近线与直线$\sqrt{3}$x+y-4=0平行,分析可得$\frac{a}{b}$=$\sqrt{3}$,即a=$\sqrt{3}$b,结合双曲线的几何性质可得c=2b,由双曲线的离心率公式计算可得答案.

解答 解:根据题意,由于双曲线C的中心在原点,焦点在y轴上,
设其方程为:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1,其渐近线方程为:y=±$\frac{a}{b}$x,
又由双曲线C的一条渐近线与直线$\sqrt{3}$x+y-4=0平行,
则有$\frac{a}{b}$=$\sqrt{3}$,即a=$\sqrt{3}$b,
则c=$\sqrt{{a}^{2}+{b}^{2}}$=2b,
则其离心率e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$;
故答案为:$\frac{2\sqrt{3}}{3}$.

点评 本题考查双曲线的几何性质,关键是掌握由双曲线的渐近线求离心率的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,过坐标原点O的圆M(圆心M在第Ⅰ象限)与x轴正半轴交于点A(2,0),弦OA将圆M截得两段圆弧的长度比为1:5.
(1)求圆M的标准方程;
(2)设点B是直线l:$\sqrt{3}$x+y+2$\sqrt{3}$=0上的动点,BC、BD是圆M的两条切线,C、D为切点,求四边形BCMD面积的最小值;
(3)若过点M且垂直于y轴的直线与圆M交于点E、F,点P为直线x=5上的动点,直线PE、PF与圆M的另一个交点分别为G、H(GH与EF不重合),求证:直线GH过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,M为PB的中点,平面ADM交PC于N点.
(1)求证:PB⊥DN;
(2)求二面角P-DN-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,当输出i的值是5时,输入的整数n的最大值是(  )
A.45B.44C.43D.42

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AD=2$\sqrt{3}$,AB=1,E为BC的中点,G为线段AB上的一点,满足$\overrightarrow{BG}=λ\overrightarrow{BC}$.
(1)当λ=$\frac{1}{2}+\frac{{\sqrt{6}}}{6}$时,求证:PG⊥DG.
(2)在(1)的条件下,若PA=2$\sqrt{3}$,求G到平面PDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F为  $({\sqrt{5},0})$,点F到某条渐近线的距离为1,则双曲线的方程为(  )
A.$\frac{{x}^{2}}{4}$-y2=1B.x2-$\frac{{y}^{2}}{4}$=1C.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1D.$\frac{3{x}^{2}}{5}$-$\frac{3{y}^{2}}{20}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知某几何体的三视图如图所示,那么该几何体是(  )
A.B.圆锥C.圆台D.圆柱

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.数学选修课中,同学们进行节能住房设计,在分析气候和民俗后,设计出房屋的剖面图(如图所示).屋顶所在直线的方程分别是y=$\frac{1}{2}$x+3和y=-$\frac{1}{6}$x+5,为保证采光,竖直窗户的高度设计为1m,那么点A的横坐标是4.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列结论中,错误的为(  )
A.对任意的x∈R,都有2x≥x2成立
B.存在实数x0,使得${log_{\frac{1}{2}}}{x_0}>{x_0}$
C.存在常数C,当x>C时,都有2x>x2成立
D.存在实数x0,使得${log_{\frac{1}{2}}}{x_0}>{2^{x_0}}$

查看答案和解析>>

同步练习册答案