精英家教网 > 高中数学 > 题目详情
8.数学选修课中,同学们进行节能住房设计,在分析气候和民俗后,设计出房屋的剖面图(如图所示).屋顶所在直线的方程分别是y=$\frac{1}{2}$x+3和y=-$\frac{1}{6}$x+5,为保证采光,竖直窗户的高度设计为1m,那么点A的横坐标是4.5.

分析 根据题意,设A的横坐标为m,将x=m分别代入直线y=$\frac{1}{2}$x+3和直线y=-$\frac{1}{6}$x+5,结合题意可得($\frac{m}{2}$+3)-(-$\frac{m}{6}$+5)=$\frac{2m}{3}$-2=1,解可得m的值,即可得答案.

解答 解:根据题意,设A的横坐标为m,则A的坐标为(m,0),
对于直线y=$\frac{1}{2}$x+3,当x=m时,y=$\frac{m}{2}$+3,
对于直线y=-$\frac{1}{6}$x+5,当x=m时,y=-$\frac{m}{6}$+5,
若满足竖直窗户的高度设计为1m,则有($\frac{m}{2}$+3)-(-$\frac{m}{6}$+5)=$\frac{2m}{3}$-2=1,
解可得m=4.5;
故A的横坐标为4.5;
故答案为:4.5.

点评 本题考查直线的斜截式方程,关键是认真分析题意,建立适当的数学模型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.将圆x2+y2=1上每一点的纵坐标不变,横坐标变为原来的$\frac{1}{4}$,得曲线C.
(Ⅰ)写出C的参数方程;
(Ⅱ)设直线l:4x+y+1=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1 P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知双曲线C的中心在原点,焦点在y轴上,若双曲线C的一条渐近线与直线$\sqrt{3}$x+y-4=0平行,则双曲线C的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数$f(x)=sinx,x∈[0,\frac{3π}{2}]$的单调递增区间是(  )
A.$[0,\frac{π}{2}]$B.[0,π]C.$[\frac{π}{2},π]$D.$[\frac{π}{2},\frac{3π}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0)的部分图象如图所示.
(Ⅰ)ω=2;(将结果直接填写在答题卡的相应位置上)
(Ⅱ)求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC 中,a,b,c 分别是内角 A,B,C 的对边,若c=4$\sqrt{2}$,B=45°,△ABC 的面积S=2,则a=1;b=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C的方程是x2+y2-2y+m=0.
(I)  如果圆C与直线y=0没有公共点,求实数m的取值范围;
(II) 如果圆C过坐标原点,直线l过点P(0,a) (0≤a≤2),且与圆C交于A,B两点,对于每一个确定的a,当△ABC的面积最大时,记直线l的斜率的平方为u,试用含a的代数式表示u,试求u的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的外接球的体积为(  )
A.$\frac{{\sqrt{3}π}}{3}$B.$\frac{16π}{3}$C.$\frac{26π}{3}$D.$\frac{{32\sqrt{3}π}}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在△ABC中,角A,B,C所对的边为a,b,c,且满足2c-2acosB=b.
(I)求角A;
(II)若c=4,△ABC的面积为$6\sqrt{3}$,求a.

查看答案和解析>>

同步练习册答案