分析 (I)运用正弦定理和两角和的正弦公式,化简整理可得角B的值;
(II)由三角形的面积公式和条件解方程可得b,再由余弦定理,计算可得a的值.
解答 解:(I)由2c-2acosB=b,
有2sinC-2sinAcosB=sinB,
而sinC=sin(A+B)=sinAcosB+cosAsinB,
代入化简得2cosAsinB=sinB,A,B∈(0,π),
所以$cosA=\frac{1}{2}$,$A=\frac{π}{3}$;
(II)由 ${S_{△ABC}}=\frac{1}{2}bcsinA=6\sqrt{3}$,$A=\frac{π}{3}$,c=4得b=6,
而$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{1}{2}$,
代入b,c解得$a=2\sqrt{7}$.
点评 本题考查解三角形的正弦定理、余弦定理和面积公式,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 对任意的x∈R,都有2x≥x2成立 | |
| B. | 存在实数x0,使得${log_{\frac{1}{2}}}{x_0}>{x_0}$ | |
| C. | 存在常数C,当x>C时,都有2x>x2成立 | |
| D. | 存在实数x0,使得${log_{\frac{1}{2}}}{x_0}>{2^{x_0}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{1}{2}$,+∞) | B. | [$\frac{1}{2}$,+∞) | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com