| A. | (-$\frac{1}{2}$,+∞) | B. | [$\frac{1}{2}$,+∞) | C. | (1,+∞) | D. | [1,+∞) |
分析 求出函数f(x)=lnx-(a+1)x的导函数,结合与直线x-2y+1=0垂直的切线斜率为-2,可得$\frac{1}{x}$-a-1=-2有大于0的解,分离参数,求出实数a的取值范围.
解答 解:函数f(x)=lnx-(a+1)x,x>0,
则f′(x)=$\frac{1}{x}$-a-1,
若函数f(x)存在与直线x-2y+1=0垂直的切线,
可得$\frac{1}{x}$-a-1=-2有大于0的解,
则$\frac{1}{x}$=a-1>0,
解得a>1,
则实数a的取值范围是(1,+∞),
故选C.
点评 本题考查导数的运用:求切线的斜率,考查存在性问题的解法,注意运用参数分离法,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$(e-1) | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{16}$,$\frac{1}{2}$) | B. | [0,$\frac{1}{2}$) | C. | [-$\frac{1}{16}$,+∞) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>$\frac{1}{2}$ | B. | $\frac{1}{2}$<a<1 | C. | a<$\frac{1}{2}$ | D. | a>1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| A | B | 合计 | |
| 认可 | |||
| 不认可 | |||
| 合计 |
| P(x2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com