精英家教网 > 高中数学 > 题目详情
16.平面中,如果一个凸起多边形有内切圆,那么凸多边形的面积S,周长c与内切圆半径r之间的关系为S=$\frac{1}{2}$cr,类比这个结论,空间中,如果已知一个凸多面体有内切球,且内切球半径为R,那么凸多面体的体积V,表面积S′,球半径R之间的关系是V=$\frac{1}{3}S′R$.

分析 由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.

解答 解:类比平面中凸多边形的面积的求法,将空间凸多面体的内切球球心与各个顶点连接起来,将凸多面体分割成若干个小棱锥,每个棱锥都以多面体的面为底面,以内切球的半径为高,从而
V=$\frac{1}{3}{S}_{1}R+\frac{1}{3}{S}_{2}R+…+\frac{1}{3}{S}_{n}R$=$\frac{1}{3}({S}_{1}+{S}_{2}+…+{S}_{n})R$
=$\frac{1}{3}S′R$(S1,S2,…,Sn为凸多面体的各个面的面积).
故答案为:V=$\frac{1}{3}S′R$.

点评 本题主要考查的知识点是类比推理,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想),属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知在△ABC中,角A,B,C所对的边为a,b,c,且满足2c-2acosB=b.
(I)求角A;
(II)若c=4,△ABC的面积为$6\sqrt{3}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列四个命题
①若a>b>0,则a-$\frac{1}{a}$>b-$\frac{1}{b}$;
②$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$≥2;
③不等式$\frac{1}{x}$<1的解集是(-∞,0)∪(1,+∞);
④若b>a>0,则a<$\sqrt{ab}$≤$\frac{a+b}{2}$<b.其中正确命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a∈R,函数f(x)=log2($\frac{1}{x}$+a).
(1)当a=-5时,解关于x的不等式f(x)>0;
(2)设a>0,若对任意t∈[$\frac{1}{2}$,1],函数f(x)在区间[t,t+1]上的最大值与最小值的差都不超过1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.南北朝时代的伟大科学家祖暅提出体积计算原理:“幂势既同,则积不容异“意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.图1中阴影部分是由曲线y=$\frac{1}{4}{x}^{2}$、直线x=4以及x轴所围成的平面图形Ω,将图形Ω绕y轴旋转一周,得几何体Γ.根据祖暅原理,从下列阴影部分的平面图形绕y轴旋转一周所得的旋转体中选一个求得Γ的体积为32π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.我国南宋数学家秦九韶(约公园1202-1261年)给出了求n(n∈N*)次多项式anxn+an-1xn-1+…+a1x+a0的值的一种简捷算法,改算法被后人命名为“秦九韶算法”,其程序框图如图所示.当x=0.4时,多项式x4+0.6x3+x2-2.56x+1的值为(  )
A.0.2B.1.58944C.1.26176D.2.248

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.命题p:数列{an}的前n项和Sn=an2+bn+c(a≠0);命题q:数列{an}是等差数列.则p是q的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=3,an=3an-1+3n+1(n=2,3,4…)
(1)证明:数列{$\frac{{a}_{n}}{{3}^{n}}$}是等差数列;
(2)求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知α∈(-$\frac{π}{2}$,0),sin(-α-$\frac{2015}{2}$π)=$\frac{\sqrt{5}}{5}$,则sin(-π-α)=(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

同步练习册答案