精英家教网 > 高中数学 > 题目详情
9.已知α∈(-$\frac{π}{2}$,0),sin(-α-$\frac{2015}{2}$π)=$\frac{\sqrt{5}}{5}$,则sin(-π-α)=(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$

分析 利用已知及诱导公式可求cosα,进而利用诱导公式,同角三角函数基本关系式即可计算得解.

解答 解:∵sin(-α-$\frac{2015}{2}$π)=cosα=$\frac{\sqrt{5}}{5}$,
又∵α∈(-$\frac{π}{2}$,0),
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{2\sqrt{5}}{5}$.
∴sin(-π-α)=sinα=-$\frac{2\sqrt{5}}{5}$.
故选:D.

点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.平面中,如果一个凸起多边形有内切圆,那么凸多边形的面积S,周长c与内切圆半径r之间的关系为S=$\frac{1}{2}$cr,类比这个结论,空间中,如果已知一个凸多面体有内切球,且内切球半径为R,那么凸多面体的体积V,表面积S′,球半径R之间的关系是V=$\frac{1}{3}S′R$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若cos($\frac{π}{4}$-θ)=m,则cos($\frac{3π}{4}$+θ)=-m(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知sin104°=m,则用含m的式子表示cos7°为$\frac{\sqrt{2(1+m)}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知tanα=$\frac{\sqrt{3}}{3}$,π<α<$\frac{3π}{2}$,则cosα-sinα=$\frac{1-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.当x∈(-$\frac{1}{2}$,1)时,不等式ax2-(a+1)x+1>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),若(k$\overrightarrow{a}$+$\overrightarrow{b}$)⊥(3$\overrightarrow{a}$-$\overrightarrow{b}$),则实数k=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在明朝程大位《算法统宗》中有首依等算钞歌:“甲乙丙丁戊己庚,七人钱本不均平,甲乙念三七钱钞,念六一钱戊己庚,惟有丙丁钱无数,要依等第数分明,请问先生能算者,细推祥算莫差争.”题意是:“现有七人,他们手里钱不一样多,依次差值等额,已知甲乙两人共237钱,戊己庚三人共261钱,求各人钱数.”根据上题的已知条件,丁有(  )
A.100钱B.101钱C.102钱D.103钱

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若角α的终边经过点(1,2),则sin2α-cos2α=(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

同步练习册答案